Это жизнь - портал для женщин

Характеристика абиотических факторов среды. Абиотические факторы Особенности рельефа местности влияющие на живые организмы

Согласно последним данным, горные области с различными морфометрическими характеристиками и специфическими климатами занимают около 36% площади Земли. Горный рельеф занимает значительные площади и в нашей стране.

Влияние рельефа на климат велико и чрезвычайно разнообразно. Оно имеет две характерные черты:

1) под влиянием особенностей рельефа создаются специфические черты климата внутри горных стран;

2) горные системы, нарушая процессы адвекции воздушных масс и атмосферной циркуляции, оказывают существенное влияние на климат и погоду прилегающих районов.

Это в значительной степени зависит от формы и композиционной структуры отдельных долин и хребтов внутри гор, а также от положения (меридиональное или широтное) и масштаба горной системы в целом.

М.А. Петросянц подразделяет орографические влияния на атмосферные процессы на три класса:

1) крупномасштабные влияния орографии на формирование общего климатического распределения воздушных течений и планетарных систем циркуляции;

2) влияние орографии на мезомасштабные процессы, т. е. на возникновение, развитие, движение циклонов и антициклонов, обострение и размывание атмосферных фронтов вблизи гор (так называемый орографический циклогенез и фронтогенез);

3) локальные орографические влияния, обусловливающие появление разнообразных особенностей в ходе метеорологических величин, связанных с конкретными формами рельефа небольшой протяженности (долина, склон, перевал и др.).

Вследствие этих влияний в горных районах создается большая неравномерность (пятнистость) в пространственном распределении облачности, ветра, особенно осадков и опасных явлений погоды. Масштабы воздействия рельефа на атмосферные погодообразующие процессы различны. Так, по горизонтали влияние гор в зависимости от их высоты и протяженности может проявляться на расстоянии до 500 км и более. Например, среднегорная система Украинских Карпат оказывает заметное влияние на распределение осадков в прилегающих районах (от 100 до 300 км в зависимости от направления влагонесущего потока). По вертикали влияние крупных горных систем (Кавказ, Памир, Гималаи и др.) на воздушные потоки и термический режим тропосферы может распространяться до высоты 10–12 км. Как показали теоретические исследования академика А.А. Дородницына, даже сравнительно небольшие возвышенности (Донецкая, Среднерусская и др., высотой 200–400 м над ур. м.), расположенные среди равнины и имеющие значительную горизонтальную протяженность, могут оказывать воздействие на погодообразующие процессы, которое прослеживается до высоты 4 км.

В горах основными климатообразующими факторами, кроме географической широты и атмосферной циркуляции, являются следующие особенности рельефа:

  • высота места над уровнем моря;
  • форма (тип) рельефа;
  • экспозиция;
  • крутизна склонов.

Хотя абсолютная высота является основным из них, однако разнообразное влияние форм рельефа, экспозиции склонов и степени защищенности места оказывается иногда столь значительным, что полностью нивелируют ее роль. Вследствие различного влияния указанных факторов рельефа на атмосферные и радиационные процессы формируется особый тип климата, называемый горным климатом . Даже на довольно близких участках могут создаваться местные вариации климата (микроклиматы), проявляющиеся в его чрезвычайной пестроте, а также вертикальной зональности.

Введение………………………………………………………………………………………….3

Абиотические факторы………………………………………………………………………… 4

Биотические факторы…………………………………………………………………………... 8

Антропогенные факторы………………………………………………………………………. 9

Законы воздействия экологических факторов на живые организмы……………………….11

Заключение…………………………………………………………………………………….. 13

Список литературы……………………………………………………………………………14

Введение

Несмотря на многообразие экологических факторов и различную природу их происхождения, существуют некоторые общие правила и закономерности их воздействия на живые организмы.

Для жизни организмов необходимо определенное сочетание условий. Если все условия среды обитания благоприятны, за исключением одного, то именно это условие становится решающим для жизни рассматриваемого организма. Оно ограничивает (лимитирует) развитие организма, поэтому называется лимитирующим фактором . Первоначально было установлено, что развитие живых организмов ограничивает недостаток какого-либо компонента, например, минеральных солей, влаги, света и т.п. В середине XIX века немецкий химик органик Ю. Либих первым экспериментально доказал, что рост растения зависит от того элемента питания, который присутствует в относительно минимальном количестве. Он назвал это явление законом минимума (закон Либиха).

В современной формулировке закон минимума звучит так: выносливость организма определяется самым слабым звеном в цепи его экологических потребностей. Однако, как выяснилось позже, лимитирующим может быть не только недостаток, но и избыток фактора, например, гибель урожая из-за дождей, перенасыщение почвы удобрениями и т.п. Понятие о том, что наравне с минимумом лимитирующим фактором может быть и максимум, ввел спустя 70 лет после Либиха американский зоолог В.Шелфорд, сформулировавший закон толерантности . Согласно закону толерантности лимитирующим фактором процветания популяции (организма) может быть как минимум, так и максимум экологического воздействия, а диапазон между ними определяет величину выносливости (предел толерантности) или экологическую валентность организма к данному фактору.

Благоприятный диапазон действия экологического фактора называется зоной оптимума (нормальной жизнедеятельности). Чем значительнее отклонение действия фактора от оптимума, тем больше данный фактор угнетает жизнедеятельность популяции. Этот диапазон называется зоной угнетения. Максимально и минимально переносимые значения фактора - это критические точки, за пределами которых существование организма или популяции уже невозможно.

Принцип лимитирующих факторов справедлив для всех типов живых организмов - растений, животных, микроорганизмов и относится как к абиотическим, так и к биотическим факторам.

В соответствии с законом толерантности любой избыток вещества или энергии оказывается загрязняющим среду началом.

Предел толерантности организма изменяется при переходе из одной стадии развития в другую. Часто молодые организмы оказываются более уязвимыми и более требовательными к условиям среды, чем взрослые особи. Наиболее критическим с точки зрения воздействия разных факторов является период размножения: в этот период многие факторы становятся лимитирующими. Экологическая валентность для размножающихся особей, семян, эмбрионов, личинок, яиц обычно уже, чем для взрослых не размножающихся растений или животных того же вида.

До сих пор речь шла о пределе толерантности живого организма по отношению к одному фактору, но в природе все экологические факторы действуют совместно.

Оптимальная зона и пределы выносливости организма по отношению к какому-либо фактору среды могут смещаться в зависимости от того, в каком сочетании действуют одновременно другие факторы. Эта закономерность получила название взаимодействия экологических факторов .

Однако взаимная компенсация имеет определенные пределы и полностью заменить один из факторов другим нельзя. Отсюда следует вывод, что все условия среды, необходимые для поддержания жизни, играют равную роль и любой фактор может ограничивать возможности существования организмов - это закон равнозначности всех условий жизни .

Абиотические факторы

Абиотические факторы - компоненты и явления неживой, неорганической природы, прямо или косвенно воздействующие на живые организмы.

Среди абиотических факторов выделяют:

1. Климатические (влияние температуры, света и влажности);

2. Геологические (землетрясение, извержение вулканов, движение ледников, сход селей и лавин и др.);

3. Орографические (особенности рельефа местности, где обитают изучаемые организмы).

4. Химические (газовый состав воздуха, солевой состав воды, кислотность).

Рассмотрим действие основных прямодействующих абиотических факторов: света, температуры и наличия воды. Температура, свет и влажность являются наиболее важными факторами внешней среды. Эти факторы закономерно изменяются как в течение года и суток, так и в связи с географической зональностью. К этим факторам организмы обнаруживают зональный и сезонный характер приспособления.

Свет как экологический фактор

Солнечное излучение является основным источником энергии для всех процессов, происходящих на Земле. В спектре солнечного излучения можно выделить три области, различные по биологическому действию: ультрафиолетовую, видимую и инфракрасную. Ультрафиолетовые лучи с длиной волны менее 0,290 мкм губительны для всего живого, но они задерживаются озоновым слоем атмосферы. До поверхности Земли доходит лишь небольшая часть более длинных ультрафиолетовых лучей (0,300 - 0,400 мкм). Они составляют около 10% лучистой энергии. Эти лучи обладают высокой химической активностью - при большой дозе могут повреждать живые организмы. В небольших количествах, однако, они необходимы, например, человеку: под влиянием этих лучей в организме человека образуется витамин Д, а насекомые зрительно различают эти лучи, т.е. видят в ультрафиолетовом свете. Они могут ориентироваться по поляризованному свету.

Видимые лучи с длиной волны от 0,400 до 0,750 мкм (на их долю приходится большая часть энергии - 45% - солнечного излучения), достигающие поверхности Земли, имеют особенно большое значение для организмов. Зеленые растения за счет этого излучения синтезируют органическое вещество (осуществляют фотосинтез), которое используют в пищу все остальные организмы. Для большинства растений и животных видимый свет является одним из важных факторов среды, хотя есть и такие, для которых свет не является обязательным условием существования (почвенные, пещерные и глубоководные виды приспособления к жизни в темноте). Большинство животных способны различать спектральный состав света - обладать цветовым зрением, а у растений цветки имеют яркую окраску для привлечения насекомых-опылителей.

Инфракрасные лучи с длиной волны более 0,750 мкм глаз человека не воспринимает, но они являются источником тепловой энергии (45% лучистой энергии). Эти лучи поглощаются тканями животных и растений, вследствие чего ткани нагреваются. Многие хладнокровные животные (ящерицы, змеи, насекомые) используют солнечный свет для повышения температуры тела (некоторые змеи и ящерицы являются экологически теплокровными животными). Световые условия, связанные с вращением Земли, имеют отчетливую суточную и сезонную периодичность. Почти все физиологические процессы у растений и животных имеют суточный ритм с максимумом и минимумом в определенные часы: например, в определенные часы суток цветок у растений открывается и закрывается, а у животных возникли приспособления к ночной и дневной жизни. Длина дня (или фотопериод), имеет огромное значение в жизни растений и животных.

Растения, в зависимости от условий обитания, адаптируются к тени - теневыносливые растения или, напротив, к солнцу - светолюбивые растения (к примеру, хлебные злаки). Однако сильное яркое солнце (яркость выше оптимальной) подавляет фотосинтез, поэтому в тропиках трудно получить высокий урожай культур, богатый белком. В умеренных зонах (выше и ниже экватора) цикл развития растений и животных приурочен к сезонам года: подготовка к изменению температурных условий осуществляется на основе сигнала - изменения длины дня, которая в определенное время года в данном месте всегда одинакова. В результате этого сигнала включаются физиологические процессы, приводящие к росту, цветению растений весной, плодоношения летом и сбрасывания листьев осенью; у животных - к линьке, накоплению жира, миграции, размножению у птиц и млекопитающих, наступлению стадии покоя у насекомых. Изменение длины дня животные воспринимают с помощью органов зрения. А растения - с помощью специальных пигментов, расположенных в листьях растений. Раздражения воспринимаются с помощью рецепторов, вследствие чего происходит ряд биохимических реакций (активация ферментов или выделение гормонов), а затем проявляются физиологические или поведенческие реакции.

Изучение фотопериодизма растений и животных показало, что реакция организмов на свет основана не просто на количестве получаемого света, а на чередовании в течение суток периодов света и темноты определенной длительности. Организмы способны измерять время, т.е. обладают “биологическими часами” - от одноклеточных до человека. “Биологические часы” - также управляются сезонными циклами и другими биологическими явлениями. “Биологические часы” определяют суточный ритм активности как целых организмов, так и процессов, происходящих даже на уровне клеток, в частности клеточных делений.

Температура как экологический фактор

Все химические процессы, протекающие в организме, зависят от температуры. Изменения тепловых условий, часто наблюдаемые в природе, глубоко отражаются на росте, развитии и других проявлениях жизнедеятельности животных и растений. Различают организмы с непостоянной температурой тела - пойкилотермные и организмы с постоянной температурой тела - гомойтермные. Пойкилотермные животные целиком зависят от температуры окружающей среды, тогда как гомойтермные способны поддерживать постоянную температуру тела независимо от изменений температуры окружающей среды. Подавляющее большинство наземных растений и животных в состоянии активной жизнедеятельности не переносит отрицательной температуры и погибает. Верхний температурный предел жизни неодинаков для разных видов - редко выше 40-45 оС. Некоторые цианобактерии и бактерии обитают при температурах 70-90 оС, в горячих источниках могут жить и некоторые моллюски (до 53 оС). Для большинства наземных животных и растений оптимум температурных условий колеблется в довольно узких пределах (15-30 оС). Верхний порог температуры жизни определяется температурой свертывания белков, поскольку необратимое свертывание белков (нарушение структуры белков) возникает при температуре около 60 oС.

Пойкилотермные организмы в процессе эволюции выработали различные приспособления к изменяющимся температурным условиям среды. Главным источником поступления тепловой энергии у пойкилотермных животных - внешнее тепло. У пойкилотермных организмов выработались различные приспособления к низкой температуре. Некоторые животные, например, арктические рыбы, обитающие постоянно при температуре -1,8 oС, содержат в тканевой жидкости вещества (гликопротеиды), препятствующие образованию кристаллов льда в организме; у насекомых накапливается для этих целей глицерин. Другие животные, наоборот, увеличивают теплопродукцию организма за счет активного сокращения мускулатуры - так они повышают температуру тела на несколько градусов. Третьи регулируют свой теплообмен за счет обмена тепла между сосудами кровеносной системы: сосуды, выходящие из мышц, тесно соприкасаются с сосудами, идущими от кожи и несущими охлажденную кровь (такое явление свойственно холодноводным рыбам). Адаптивное поведение проявляется в том, что многие насекомые, рептилии и амфибии выбирают места на солнце для обогрева или меняют различные позы для увеличения поверхности обогрева.

У ряда холоднокровных животных температура тела может меняться в зависимости от физиологического состояния: к примеру, у летающих насекомых внутренняя температура тела может подниматься на 10-12 oС и более вследствие усиленной работы мышц. У общественных насекомых, особенно у пчел, развился эффективный способ поддержания температуры путем коллективной терморегуляции (в улье может поддерживаться температура 34-35 oС, необходимая для развития личинок).

Пойкилотермные животные способны приспосабливаться и к высоким температурам. Это происходит также разными способами: теплоотдача может происходить за счет испарения влаги с поверхности тела или со слизистой верхних дыхательных путей, а также за счет подкожной сосудистой регуляции (например, у ящериц скорость тока крови по сосудам кожи увеличивается при повышении температуры).

Наиболее совершенная терморегуляция наблюдается у птиц и млекопитающих - гомойтермных животных. В процессе эволюции они приобрели способность поддерживать постоянную температуру тела благодаря наличию четырехкамерного сердца и одной дуги аорты, что обеспечило полное разделение артериального и венозного кровотока; высокого обмена веществ; перьевого или волосяного покрова; регуляции теплоотдачи; хорошо развитой нервной системы приобрели способность к активной жизни при разной температуре. У большинства птиц температура тела несколько выше 40 oС, а у млекопитающих - несколько ниже. Весьма важное значение для животных имеет не только способность к терморегуляции, но и адаптивное поведение, постройка специальных убежищ и гнезд, выбор места с более благоприятной температурой и т.п. Они также способны приспосабливаться к низким температурам несколькими путями: кроме перьевого или волосяного покрова, теплокровные животные с помощью дрожи (микросокращения внешне неподвижных мышц) уменьшают теплопотери; при окислении бурой жировой ткани у млекопитающих образуется дополнительная энергия, поддерживающая обмен веществ.

Приспособление теплокровных к высоким температурам во многом сходно с аналогичными приспособлениями холоднокровных - потоотделение и испарение воды со слизистой рта и верхних дыхательных путей, у птиц - только последний способ, так как у них нет потовых желез; расширение кровеносных сосудов, расположенных близко к поверхности кожи, что усиливает теплоотдачу (у птиц этот процесс протекает в неоперенных участках тела, например через гребень). Температура, как и световой режим, от которого она зависит, закономерно меняется в течение года и в связи с географической широтой. Поэтому все приспособления более важны для обитания при отрицательных температурах.

Вода как экологический фактор

Вода играет исключительную роль в жизни любого организма, поскольку она является структурным компонентом клетки (на долю воды приходится 60-80% массы клетки). Значение воды в жизни клетки определяется ее физико-химическими свойствами. Вследствие полярности молекула воды способна притягиваться к любым другим молекулам, образуя гидраты, т.е. является растворителем. Многие химические реакции могут протекать происходить только в присутствии воды. Вода является в живых системах “тепловым буфером”, поглощая тепло при переходе из жидкого состояния в газообразное, тем самым предохраняя неустойчивые структуры клетки от повреждения при кратковременном освобождении тепловой энергии. В связи с этим она производит охлаждающий эффект при испарении с поверхности и регулирует температуру тела. Теплопроводные свойства воды определяют ее ведущую роль терморегулятора климата в природе. Вода медленно нагревается и медленно охлаждается: летом и днем вода морей океанов и озер нагревается, а ночью и зимой также медленно охлаждается. Между водой и воздухом происходит постоянный обмен углекислым газом. Кроме того, вода выполняет транспортную функцию, перемещая вещества почвы сверху вниз и обратно. Роль влажности для наземных организмов обусловлена тем, что осадки распределяются на земной поверхности в течение года неравномерно. В засушливых районах (степи, пустыни) растения добывают себе воду с помощью сильно развитой корневой системы, иногда очень длинных корней (у верблюжьей колючки - до 16 м), достигающих влажного слоя. Высокое осмотическое давление клеточного сока (до 60-80 атм), увеличивающее сосущую силу корней, способствует удержанию воды в тканях. В сухую погоду растения снижают испарение воды: у пустынных растений утолщаются покровные ткани листа, либо на поверхности листьев развивается восковой слой или густое опушение. Ряд растений достигает снижения влаги уменьшением листовой пластинки (листья превращаются в колючки, часто растения полностью теряют листья - саксаул, тамариск и др.).

В зависимости от требований, предъявляемых к водному режиму, среди растений различают следующие экологические группы:

Гидратофиты – растения постоянно живущие в воде;

Гидрофиты- растения лишь частично погружаемые в воду;

Гелофиты- болотные растения;

Гигрофиты- наземные растения, обитающие в чрезмерно увлажненых местах;

Мезофиты- предпочитают умеренное увлажнение;

Ксерофиты- растения, приспособленные к постоянном недостатку влаги; среди ксерофитов различают:

Cуккуленты- накапливающие воду в тканях своего тела (сочные);

Cклерофиты- теряющие значительное количество воды.

Многие животные пустынь способны обходиться без питьевой воды; некоторые быстро и долго могут бегать, совершая длинные миграции на водопой (сайгаки, антилопы, верблюды и др.); часть животных добывает воду из пищи (насекомые, пресмыкающиеся, грызуны). Жировые отложения пустынных животных могут служить своеобразным резервом воды в организме: при окислении жиров образуется вода (отложения жира в горбе верблюдов или подкожные отложения жира у грызунов). Малопроницаемые покровы кожи (например, у пресмыкающихся,) защищают животных от потери влаги. Многие животные перешли к ночному образу жизни или скрываются в норах, избегая иссушающего действия низкой влажности и перегрева. В условиях периодической сухости ряд растений и животных переходят в состояние физиологического покоя - растения приостанавливают рост и сбрасывают листья, животные впадают в спячку. Эти процессы сопровождаются пониженным обменом веществ в период сухости.

Биотические факторы

Биотические факторы - совокупность влияний жизнедеятельности одних организмов на жизнедеятельность других (внутривидовые и межвидовые взаимодействия), а также на неживую среду обитания.

Функциональная система, включающая в себя сообщество живых существ и их среду обитания, называется экологической системой (или экосистемой). В такой системе связи между ее компонентами возникают прежде всего на пищевой основе и основе способов получения энергии. По способу питания, получения и использования энергии все организмы делятся на автотрофные и гетеротрофные. В некоторые экосистемы (к примеру, почвенные) входят часто анаэробные микроорганизмы. В процессе питания аэробные гетеротрофы разлагают органическое вещество до углекислоты, воды и минеральных солей, которые в свою очередь могут быть использованы повторно автотрофами. В природе формируется непрерывный круговорот биогенных веществ: автотрофы извлекают необходимые для жизни химические вещества из окружающей среды и через ряд гетеротрофов вновь в нее возвращаются. Все процессы осуществляются за счет притока энергии извне - лучистая энергия Солнца является источником этой энергии. Поэтому системы, получающие энергию от Солнца, называются открытыми. Круговорот веществ возник в процессе эволюции, что является непременным условием существования жизни. Световая энергия Солнца трансформируется организмами в другие формы: в химическую, механическую и, наконец, в тепловую. В соответствии с законами термодинамики такие превращения всегда сопровождаются рассеиванием части энергии в форме тепла.

Пищевые цепи и трофические уровни

В экологических системах в процессе эволюции сложились цепи взаимосвязанных видов, последовательно извлекающих материалы и энергию из исходного пищевого вещества. Такая последовательность называется пищевой цепью, а каждое ее звено- трофическим уровнем. Первый трофический уровень занимают организмы автотрофы, или так называемые первичные продуценты. Организмы второго трофического уровня называются первичными консументами,третьего- вторичными консументами и т. д. Последний уровень обычно занимают редуценты или детритофаги. Редуцентами называют сапрофитные организмы, разлагающие сложные органические соединения до относительно простых неорганических веществ. Кусочки частично разложившегося материала называют детритом, а мелких животных питающихся им- детритофагами (например: дождевой червь, мокрица, личинка падальной мухи и др.). Ниже приводится характеристика каждого звена пищевой цепи, а их последовательность показана на рисунке.

В пищевой цепи зеленые растения - это те организмы, которые создают начальное органическое вещество, используя энергию Солнца. Лишь только около 1% энергии, падающей на растения, превращается в потенциальную энергию химических связей синтезированных органических веществ и может быть использовано в дальнейшем при питании гетеротрофными организмами. При потреблении этой пищи животными организмами только 5-20% энергии пищи переходит во вновь построенное тело животного, остальная часть энергии, содержащейся в зеленом растении, расходуется на различные процессы жизнедеятельности животного, превращаясь в тепло и рассеиваясь. При поедании травоядного животного хищником часть накопленной энергии также расходуется. Вследствие потери полезной энергии цепи питания не могут быть очень длинными, чаще такая цепь состоит из 3-5 звеньев (трофических уровней). Поэтому на каждом последующем трофическом уровне количество образующегося органического вещества резко уменьшается из-за потери энергии. В типичных пищевых цепях хищников плотоядные животные оказываются крупнее на каждом следующем трофическом уровне.

Растительный материал (например, нектар) ¨ муха ¨ паук ¨ землеройка ¨ сова

Существуют два типа пищевых цепей- пастбищные и детритные. Выше мы привели примеры пастбищных пищевых цепей. Пищеавя цепь другого типа – цепь, начинающаяся с детрита:

Детрит ¨ детритофаг ¨ хищник

Листовая подстилка ¨ Дождевой червь ¨ Черый дрозд ¨ Ястреб- перепелятник

Экологические пирамиды

Можно привести простой расчет: если принять за основу (округленно), что в вещество тела животного переходит в среднем 10% энергии съеденной пищи, то за счет 1 т растительной массы может образоваться 100 кг массы хищника. В действительности эти цифры могут быть и иными, поскольку коэффициент использования энергии неодинаков у разных видов. Выявляется четкая закономерность, называемая правилом экологической пирамиды: количество растительного вещества в несколько раз больше, чем общая масса растительноядных животных, а масса каждого последующего звена пищевой цепи также прогрессивно уменьшается.

1. Пирамида чисел отражает число особей на каждом уровне пищевой цепи;

2. Пирамида биомассы - количество органического вещества (биомассу) на каждом уровне;

3. Пирамида энергии - количество энергии в пище.

Все эти категории, различаясь по абсолютным значениям, имеют одинаковую направленность. Пищевые связи в экосистеме не являются прямолинейными, так как компоненты экосистемы находятся между собой в сложных взаимодействиях.

Антропогенные факторы

Антропогенные факторы - совокупность факторов окружающей среды, обусловленных случайной или преднамеренной деятельностью человека за период его существования.

Антропогенные факторы среды, внесённые в природу человеческой деятельностью изменения, воздействующие на органический мир (см. Экология). Переделывая природу и приспосабливая её к своим потребностям, человек изменяет среду обитания животных и растений, влияя тем самым на их жизнь. Воздействие может быть косвенным и прямым. Косвенное воздействие осуществляется путём изменения ландшафтов - климата, физического состояния и химизма атмосферы и водоёмов, строения поверхности земли, почв, растительности и животного населения. Большое значение приобретает увеличение радиоактивности в результате развития атомной промышленности и особенно испытаний атомного оружия. Человек сознательно и бессознательно истребляет или вытесняет одни виды растений и животных, распространяет другие или создаёт для них благоприятные условия. Для культурных растений и домашних животных человек создал в значительной степени новую среду, многократно увеличив продуктивность освоенных земель. Но это исключило возможность существования многих диких видов. Увеличение народонаселения Земли и развитие науки и техники привели к тому, что в современных условиях очень трудно найти участки, не затронутые деятельностью человека (девственные леса, луга, степи и т. д.). Неправильная распашка земель и неумеренный выпас скота не только привели к гибели естественных сообществ, но и усилили водную и ветровую эрозию почв и обмеление рек. Вместе с тем возникновение селений и городов создало благоприятные условия для существования многих видов животных и растений (см. Синантропные организмы). Развитие промышленности не обязательно приводило к обеднению живой природы, но часто способствовало появлению новых форм животных и растений. Развитие транспорта и других средств сообщения способствовало распространению как полезных, так и многих вредных видов растений и животных (см. Антропохория). Прямое воздействие направлено непосредственно на живые организмы. Например, нерациональные рыболовство и охота резко сократили численность ряда видов. Нарастающая сила и убыстряющиеся темпы изменения природы человеком вызывают необходимость её охраны (см. Охрана природы). Целенаправленное, сознательное преобразование природы человеком с проникновением в микромир и космос знаменует собой, по В. И. Вернадскому (1944), формирование «ноосферы» - оболочки Земли, измененной человеком.

Законы воздействия экологических факторов на живые организмы

Список используемой литературы

1.Благосклонов К. Н., Иноземцов А. А., Тихомиров В. Н., «Охрана природы», М., 1967.

Рельеф в жизни растений выступает как косвенно действующий фактор. Под влиянием рельефа по-разному складывается комплекс климатических и почвенных факторов. В зависимости от величины форм различают макрорельеф (горы, низменности), мезорельеф (холмы, овраги, гряды) и микрорельеф (мелкие неровности, западины, кочки).

Макрорельеф

При подъёме в горы изменяются климатические, почвенные и другие экологические факторы. Поэтому в горах наблюдается поясное распределение растительности. Особенно своеобразные условия складываются возле границы вечных снегов, они отражаются на строении, физиологии и сезонном развитии растений. Для высокогорных растений характерен приземистый рост, мелкие листья, крупные и ярко окрашенные цветки. У многих растений выражены признаки ксерофитизма. Наряду с высотой над уровнем моря сильно сказывается на распределении растений крутизна и экспозиция склонов. На южном склоне произрастают наиболее теплолюбивые и светолюбивые растения. Материал с сайта

Мезорельеф

Менее крупные формы рельефа (холмы, балки, овраги) также влияют на распределение растительности. Так, в лесной зоне примеси дуба и ясеня в лесах приурочены к повышенным местам, а на равнинах поселяются более северные виды. Основное значение элементов мезорельефа состоит в перераспределении зональных экологических факторов.

Микрорельеф

Микрорельеф также способствует появлению различий в среде обитания растений, в связи с этим наблюдается чередование на небольшом пространстве видов разными экологическими особенностями.

В отличие от тепла, света, влажности, почвы, рельеф, сам по себе, не выступает как прямой экологический фактор. Но его характер в определенной степени определяет действие абиотических факторов и влияет на условия жизни растений. В зависимости от масштаба и детализации различают несколько форм рельефа:

крутящий (горы, низины, расщелины и впадины):

мезорельефа (степные блюдца, карстовые впадины, овраги, буераки, дюны, холмы)

микрорельеф (ямы, мелкие впадины, приствольные поднятия, кочки).

Каждая из этих форм играет определенную роль в формировании комплекса экологических факторов для растений.

Крутящий

Наиболее существенное влияние на формирование растительных группировок имеет крутящий. В качестве примера можно вспомнить вертикальную зональность в горах, где каждые 100 м подъема сопровождаются снижением температуры в среднем на 0,5 ° С. Температурный градиент может колебаться в зависимости от особенностей гор и времени года. Для Кавказского хребта он составляет 0,48 ° С, для Альп - 0,51 ° С, для гор Калифорнии - 0,75 ° С. Температурный градиент летнего периода больше зимнего (табл. 7.1). С высотой снижается средняя температура возрастает суточный перепад температур, увеличивается количество осадков, скорость ветра и интенсивность солнечной радиации, снижается давление. Благодаря этому, в горной местности, по мере подъема, наблюдается вертикальная зональность распределения растительности, которая соответствует изменению зон по широте от экватора к полюсу (рис. 7.1).

Таблица 7.1

Изменение температурного градиента в зависимости от времени года

(По В. С. Гулисашвили, 1956)

Место наблюдения

Величина градиента в градусах

зима

весна

лето

осень

среднее

Кавказский хребет

Горный массив Гарц

Восточные Альпы (северные склоны)

Гора Этна

Северо-Западная Индия

Скалистые горы (Северная Америка)

Рис. 7.1. Вертикальная и широтная тональность растительности

Типичным примером вертикальной зональности растительности является высокие на планете Гималайские горы. Они отличаются разнообразием и богатством растительных поясов:

От подножия гор в Индостане до высоты 1000 м по южному склону поднимаются влажные тропики с огромными вечнозелеными фикусами, многочисленными большими деревьями, на которых поселяются различные эпифитные орхидеи и папоротники. Стволы деревьев перевитые лианами. Наряду растут бамбук и гигантские травы (до 3 - 4 м высотой)

Второй субтропический пояс вечнозеленых лесов расположен на высоте 1000-2000 м и сформирован субтропическими хвойными, пальмами, мимозовых и тому подобное;

Третий пояс расположен на высоте 2000 - 2800 м, его составляют вечнозеленые дубы, грецкий орех, гималайский кедр и тому подобное;

Четвертый пояс, простирающийся до высоты 3500 м, состоит из пихты Вебиана, сосны обыкновенной и других бореальных хвойных пород;

Пятый пояс состоит из кустарников, наиболее распространенными из которых являются рододендроны;

Шестой пояс формируют высокогорные луга бореального типа;

Выше расположены горные холодные пустыни и исконные снега.

К факторам, которые определяют высотное объясните, относятся изменение с

высотой температуры, количества осадков, атмосферного давления. Кроме того, для высокогорья характерны понижение температуры (частые заморозки), сильные ветры, низкое содержание углекислого газа. На растительность влияет характер горных пород и экспозиция и крутизна склонов.

Интенсивность солнечной радиации в горах выше, чем на равнине, объясняется некоторым разрежением атмосферы и ее прозрачностью. Так, в высокогорье Памира освещенность в дневные часы составляет около 130 000 лк, то есть почти столько, как на границе земной атмосферы. С высотой возрастает значение солнечной постоянной, что определяется как количество солнечной энергии, падающей 1 см2 горизонтальной поверхности за единицу времени (табл. 7.2). У верхней границы атмосферы она составляет в среднем 1,94 кал / (см2 мин.). Кроме того, на такой высоте значительно интенсивнее ультрафиолетовое излучение, вредное в высоких дозах.

Таблица 7.2

Интенсивность солнечной радиации на разной высоте над уровнем моря

(По Η. Н. Калитин и В. С. Гулисашвили, 1956)

В некоторых местностях в ясные ночи, особенно зимой, наблюдается явление температурной инверсии - воздух на склонах и вершине до определенной высоты теплее, чем в долинах. Считается, что ночью холодный воздух спускается с гор вниз, вытесняя теплый воздух вверх. Распределение тепла в значительной степени зависит от экспозиции и крутизны склонов (табл. 7.3). Пологие склоны, при одной и той же экспозиции, как при ясной, так и при облачной погоде получают больше тепла, чем крутые. То есть, чем круче склон, тем меньше тепла он получает. В северных широтах южные склоны при одинаковой крутизне, при любой погоде, получают больше тепла, чем северные. Такое перераспределение климатических характеристик, связанный с рельефом, влияет на формирование растительности. На южных склонах образуются лесные фитоценозы с ксерофитных древесных пород (сосны, дуба), а на склонах северной экспозиции - с мезофитных древесных пород (бук, ель). Кроме того, одна и та же древесина на южных склонах поднимается к большей высоты, чем на северных (табл. 7.4). Достаточно показательна высота альпийской границе леса на склонах определенной экспозиции (табл. 7.5). Выше поднимается альпийская граница леса и границы распространения древесной растительности на южных, юго-западных и юго-восточных склонах.

Таблица 7.3

Зависимость теплового режима от экспозиции и крутизны склонов

(По В. С. Гулисашвили, 1956)

Место

наблюдения

крутизна

склона,

градус

Сумма тепла за вегетационный период с апреля по август, (г кал) / 1 см2

при ясной погоде

при облачной погоде

полная радиация

горизонтальная поверхность

южный склон

восточный склон

западный склон

северный склон

южный склон

восточный склон

западный склон

северный склон

Таблица 7.4

Верхняя граница распространения лесных пород в горах Приморского края (43 ° северной широты)

(По Л. С. Бергом и В. С. Гулисашвили, 1956)

Таблица 7.5

Влияние экспозиции склона на альпийскую границу леса

(По В. 3. Гулисашвили, 1956)

экспозиция склона

Высота прохождения альпийской границе леса в Швейцарских Альпах, г.

Максимальная высота распространения ели, г.

Юго-восточная

П ивденно-западная

Западная

Северо-западная

Северная

Северо-восточная

Восточная

Гидрологический режим в горах довольно разный. В горных массивах Альп, Карпат. Западного Кавказа влажность присутствует в достаточном количестве. В горах Памира, Тянь-Шаня растения живут в условиях значительной засухи. Своеобразные условия складываются непосредственно у массивов снега и льда. В целом, высокогорные условия для растений достаточно критичны, что влияет на их строение, физиологию, развитие.

Особенность распространения растений в горах связана с тем, что специфические экологические условия на каждом склоне и отличаются в отдельных массивах. Это объясняется самой особенностями геологического строения конкретной горы, процессами ее разрушения и зарастание. Поэтому на склонах формируется значительная мозаичность экологических условий, в дальнейшем приводит к формированию специфических растительных сообществ. Например, в пределах одного только альпийского пояса возникают совершенно разные (по экологическим факторами) условия роста: сухие и заболоченные, крутые склоны без снежного покрова и места где снег сохраняется в течение года, площади защищены от ветра и такие, что постоянно продуваются (рис. 7.2).

Высокогорные растения характеризуются низкорослостью. Независимо от расположения горных массивов, здесь преобладают кустарники и кустарнички, стелющиеся, розеточные многолетние травы, дерновые злаки и осоки, мхи и лишайники. Но иногда, например, в Южных Андах и Африке, на высокогорье можно наблюдать древовидные розеточные растения с высокими Колонноподобные стволами. Еще один характерный признак растений высокогорья - большая масса подземной части растений над надземной. Низкорослость высокогорных растений связывается с действием низких температур, сильного ветра и формообразующие действием радиации, ведь коротковолновое излучение замедляет ростовые процессы. Преобладающее значение этих абиотических условий подтверждается опытами по переносу достаточно высокорослых растений из низины в горы. Результаты свидетельствуют, что высокие растения находясь на высокогорье через 3-4 года адаптируются к новым условиям, приостанавливаются в росте и становятся низкорослыми.

Рис. 7.2. Мозаичность распределения типов мисцезростання и растительности в альпийском поясе на небольшой площади

Высокогорные растения имеют также ряд анатомических приспособлений для защиты от солнечной радиации и сохранения влаги:

Утолщенные покровные ткани;

Усиленное развитие механических тканей;

Уменьшение размеров клеток;

Уменьшение размеров и увеличение количества устьиц;

Опушки и восковой налет.

Последнее приспособление не универсальны - в горах довольно часто встречаются растения без опушки или без воскового покрова.

Низкие температуры и интенсивное освещение обеспечивают образование в растениях антоцианов, что создает гамму цветов в окраске различных частей растений. Сочетание насыщенных цветов больших цветов и мелких листьев - это характерный признак высокогорных растений.

Антоцианы - пигменты из группы флавоноидов, содержащихся в клеточном соке растений, плодов, листьев растений, окрашивая их в красный, фиолетовый, голубой цвета или их комбинации.

Главные физиологические процессы в высокогорных растений протекают очень интенсивно. В первую очередь, это касается газообмена. На больших высотах фотосинтез проходит очень интенсивно - поглощается 50-100 мг СО2 на 1 г листа за 1:00. У некоторых растений даже не наблюдается насыщение светом фотосинтетическая деятельность постоянно растет при увеличении освещенности. Влияние низких температур в условиях высокогорья проявляется в росте концентрации растворимых углеводов, органических кислот (например, аскорбиновой), ароматических веществ. Именно поэтому высокогорные растения очень ценятся в пищевой и медицинской промышленности, пчеловодстве, и как кормовые. Характерной чертой высокогорных растений является повышенная интенсивность окислительно-восстановительных процессов, увеличение активности ферментов даже при низких температурах. Большинство исследователей отмечают усиленное дыхание растений на высоте, что приводит к увеличению энергии, освобождается при распаде сложных соединений.

Существенно изменяется при поднятии в горы сезонное развитие растений. Чем выше, тем позже тает снег весной прежнему выпадает осенью, тем короче вегетационный период. Поднимаясь в горы в течение одного дня можно наблюдать все фазы развития растений одного вида: фазу цветения, бутонизации, распускания листьев.

Различные виды растений по-разному реагируют на высотную зональность. Одни имеют широкий высотный диапазон и растут в разных поясах, другие - очень узкую экологическую приспособленность. Например, черника (Vaccinium myrtillus ) в Карпатах, а типчак (Festuca valesiaca ) на Кавказе поднимаются до альпийского пояса. Эти виды имеют высокую экологическую пластичность.

Горные цепи достаточно часто выступают как своеобразный климатический барьера и барьер на пути распространения различных видов растений. Типичным примером является пустыня Атанама в Чили, которая образовалась благодаря тому, что горы задерживают дождевые облака. Кстати, в Чили на побережье океана так называемые "леса туманов". Они расположены на склонах гор, которые также задерживают дождевые облака. Своеобразие условий создается еще и потому, что к берегам подходит холодная океанская течение Гумбольдта. Благодаря разнице температур здесь постоянно образуются туманы. Это формирует специфические экологические условия для роста растений. Есть много и других подобных примеров. В Центральной Азии существует памирских нагорье (Россия), которое расположено бы в тени высоких гор на Земле. Но Гималаи как раз и становятся на пути передвижения влажных воздушных масс в глубину континента. Именно в такую зону влияния попало памирских нагорья, где сформировалась высокогорная пустыня (средняя высота над уровнем моря 4000 м). На ее территории выпадает очень мало осадков -от 15 до 150 мм в год. В то же время, имеет место интенсивное испарение, низкая влажность и высокая температура воздуха. Благодаря этим особенностям в разных районах Памирского нагорья образовались своеобразные растительные группировки. В южной части они напоминают сухие альпийские луга, в центральной - бедный Ковыльном степь, в восточной - пустыню.

В абиотической части среды обитания (в неживой природе) все факторы прежде всего можно разделить на физические и химические. Однако для понимания сути рассматриваемых явлений и процессов абиотические факторы удобно представить совокупностью климатических, топографических, космических факторов, а также характеристик состава среды (водной, наземной или почвенной) и др.

Свет является одним из важнейших абиотических факторов, особенно для фотосинтезирующих зеленых растений. Только на свету осуществляется важнейший в биосфере процесс - фотосинтез . Свет влияет на скорость роста и развития растений, на интенсивность фотосинтеза, на активность животных, вызывает изменение влажности и температуры среды, является важным фактором, обеспечивающим суточные и сезонные биологические циклы. Каждые местообитание характеризуется определенным световым режимом, определяемым интенсивностью (силой), количеством и качеством света. Интенсивность света измеряется энергией, приходящейся на единицу площади в единицу времени; количество света определяется суммарной радиацией.

По отношению к свету как экологическому фактору различают следующие группы растений : гелиофиты, сциофиты и факультативные гелиофиты. Гелиофиты (светолюбивые) - обитают на открытых местах с хорошей освещенностью и в лесной зоне встречаются редко (подсолнечник, козлобородник и др). Сциофиты (теневые растений) - не выносят освещения и живут под пологом леса в постоянной тени (лесные травы, папоротники, мхи). Факультативные гелиофиты (теневыносливые) - могут жить при хорошем освещении, но легко переносят и затемненные места (большинство растений лесов, луговые растения, кустарники)

Одним из наиболее важных факторов, определяющих существование развитие и распространение организмов является температура. Важно не только абсолютное количество тепла, по и его временное распределение, т.е. тепловой режим. Растения не обладают собственной температурой тела: их анатомо - морфологические и физиологические механизмы терморегуляции направлены на защиту организма от вредного воздействия температур. К физиологическим приспособлениям растений, сглаживающим вредные влияние высоких и низких температур, можно отнести: интенсивность испарения - транспирацию, накопление в клетках солей хлорофилла препятствовать проникновению солнечных лучей.


Температура главным образом связана с солнечным излучением, но в ряде случаев определяется энергией геотермальных источников. При температуре ниже точки замерзания живая клетка физически повреждается образующимися кристаллами льда и гибнет, а при высоких температурах происходит денатурацияферментов. Абсолютное большинство растений и животных не выдерживает отрицательных температур тела. Верхний температурный предел жизни редко поднимается выше 40-45 °С.

В диапазоне между крайними границами скорость ферментативных реакций (следовательно, и интенсивность обмена веществ) удваивается с повышением температуры на каждые 10 °С. Значительная часть организмов способна контролировать (поддерживать) температуру тела, причем в первую очередь наиболее жизненно важных органов. Такие организмы называют гомойотермными — теплокровными (от греч. homoios — подобный, therme — теплота) (млекопитающие, птицы), в отличие от пойкилотермных — холоднокровных (от греч. poikilos — различный, переменчивый, разнообразный), имеющих непостоянную температуру, зависящую от температуры окружающей среды (растения, земноводные)

Организмы, для жизни которых требуется условия, ограниченные узким диапазоном толерантности по величине температуры, называют стенотермными, а способных жить в широком диапазоне температур - эвритермными.

Вода обязательна для жизни на Земле, в экологическом плане она уникальна. Вода является важнейшим экологическим фактором в жизни живых организмов и их постоянной составной частью. По отношению к водному режиму выделяют следующие экологические группы растений и животных: влаголюбивые, сухолюбивые и предпочитающие умеренную влажность.

В зависимости от способов адаптации растений к влажности выделяют несколько экологических групп:

- гидатофиты - водные растения, целиком или большей частью своей погруженные в воду (ряска, элодея);

- гидрофиты - наземно-водные растения, погруженные в воду только нижними частями (стрелолист, частуха);

- гигрофиты — наземные растения, живущие в очень влаж-ных почвах и в условиях повышенной влажности;

- мезофиты — переносят незначительную засуху (древесные растения различных климатических зон, травянистые растения дубрав, большинство культурных растений);

- ксерофиты — растения сухих степей и пустынь, способные накапливать влагу в мясистых листьях и стеблях — суккуленты (алоэ, кактусы), а также обладающие большой всасывающей силой корней и способные снижать транспирацию с узкими мелкими листьями — склерофиты.

Среди наземных животных различают:

Гидрофилы - влаголюбивые животные (мокрицы, комары, наземные молюски); мезофилы - обитают в районах с умеренной влажностью (многие насекомые, птицы, млекопитающие);

Ксерофилы - это сухолюбивые животные, не переносящие высокой влажности (верблюди, пустынные грызуны, пресмыкающиеся).

Эдафические факторы - это свойства почвы как экологический фактор, оказывающий воздействие на животные организмы, живущие в них и на корневую систему растений. Очень важный фактор для многих животных и растений - реакция среды (рН). Засоленными называют почвы с избыточным содержанием водорастворимых солей (хлоридов, сульфатов, карбонатов).

Флора и фауна засоленных почв весьма специфична. Растения здесь устойчивы не только к концентрации, но и к составу солей, но разные растения приспособлены по разному. Солеустойчивые растения - галофиты, например солерос может выдержать концентрацию солей свыше 20 %, а в тоже время дождевые черви даже при невысокой степени засоления длительный срок выдержать его не могут.

Топографические факторы

Рельеф относится к орографическим факторам и тесно связана с другими абиотическими факторами, хотя и не принадлежащим к таким прямодействующим экологическим факторам, как свет, тепло, вода и почва. Главным топографическим (орографическим) фактором является высота.

Основной топографический фактор — высота над уровнем моря. С высотой снижаются средние температуры, увеличивается суточный перепад температур, возрастает количество осадков, скорость ветра и интенсивность радиации, понижается давление. Рельеф местности — один из главных факторов, влияющих на перенос, рассеивание или накопление примесей в атмосферном воздухе.

Выводы

Таким образом, живые организмы воздействие среды воспринимают через посредство факторов среды, которые называются экологическими. Экологические факторы - это определенные условия и элементы среды, которые оказывают специфическое воздействие на организм. Они подразделяются на абиотические, биотические и антропогенные.

Один и тот же фактор на разные организмы может оказывать оптимальное воздействие при различных значениях. Интенсивность экологического фактора, наиболее благоприятная для жизнедеятельности организма, называется оптимумом, а дающая наихудший эффект - пессимумом.

Способность организмов выносить отклонения значений экологических факторов называется толерантностью, которая может иметь к разным фактором не одинаковый диапазон диапазон выносливости (терпимости).Организм может иметь приспособленность к узкому диапазону одного фактора и широкому диапазону - другого свойство видов адаптироваться к тому или иному диапазону факторов среды называется экологической пластичностью.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!