Это жизнь - портал для женщин

Приспособления у растений и животных к абиотическим факторам среды. Температурный режим

Из-за свойств цитоплазмы клеток все живые существа способны жить при температуре между 0 и 50 °С. Большинство мест обитаний на поверхности нашей планеты имеет температуру именно в этих пределах; для каждого вида выход за эти пределы означает гибель либо от холода, либо от жары. Однако имеются виды, которые могут приспосабливаться к экстремальным температурам и выдерживать их в течение дли-тельного времени. Например, имеются бактерии и сине-зеленые водоросли, населяющие источники с температурой выше 85 °С. Животные менее стойки. Раковинные амебы встречаются при 58 °С, личинки многих двукрылых могут жить при температуре около 50 °С. Обитающие высоко в горах щетинохвостки, ногохвостки и клещи прекрасно выживают при температуре ночью около -10 °С. Полярные воды с температурой около 0 °С населены богатой и разнообразной фауной, питающейся микроскопическими водорослями.

Для того чтобы сохранить температуру тела постоянной, животное должно либо уменьшить потери тепла эффективной защитой, либо увеличить производство тепла. Это достигается весьма разнообразными способами. Прежде всего, важен защитный покров, будь то шерсть, перья или жировой слой. Защитная роль покровов животных, а также одежды человека заключается в том, что они задерживают конвекционные потоки, замедляют испарение, ослабляют или совсем прекращают лучеиспускание. Защитная роль шерстяного покрова хорошо известна. Благодаря ему ездовая собака может, спать на снегу при температуре –50 °С. С приближением зимы мех ее становится гуще и длиннее. Не менее эффективны и перья. Перья и шерсть не просто пассивные оболочки. Распушив их, птицы и животные создают воздушную подушку с хорошими теплоизоляционными свойствами. Хорошо известна и защитная роль жира. Несмотря на то, что у китов, тюленей, моржей голая шкура, которая имеет толщину 2-3 мм, они часами плавают в ледяной воде. Под кожей у них находится толстый слой жира, который хорошо ослабляет утечку тепла. Жировые запасы императорского пингвина достигают 10-15 кг, при общей массе 35 кг. Кончики лап и кончик носа не могут быть покрыты шерстью, перьями или жиром, так как иначе они не выполняли бы своих основных функций. Существуют различные механизмы для сохранения тепла в незащищенных местах, действующие за счет теплообмена в пучках кровеносных сосудов, где соприкасаются вены и артерии. Оказывается, что уши, хвост, лапы тем короче, чем холоднее климат. Хорошим примером этого может служить лисица: фенек Сахары имеет длинные конечности и огромные уши; лисица европейской зоны более приземиста, уши ее намного короче; у песца, живущего в Арктике, очень маленькие уши и короткая морда. Температура лапы (или плавника) животного отличается от температуры тела. Она равна температуре среды. Например, температура тела белой куропатки может превышать температуру ее лап на З8 °С. Это очень важно. Ведь если бы лапы, соприкасающиеся со снегом, были теплыми, то снег под ними растаял бы и птица могла бы примерзнуть. Кроме того, понижение температуры конечностей снижает теплоотдачу Хорошо известный прием защиты от холода - зимняя спячка. Многие млекопитающие способны при этом значительно снижать интенсивность обмена веществ. Температура их тела может упасть до 0 °С. Перестав двигаться, они тратят запасенные резервы очень медленно. Таковы сурок, соня, летучие мыши, бурый медведь. Борьба с перегревом осуществляется в основном путем увеличения испарения. Все видели, как в жару собака высовывает язык, потому что у нее очень мало потовых желез.

Приспособление организмов к среде

Организмы в течение жизни испытывают влияние факторов, сильно удаляющихся от оптимума. Им приходится переносить жару, засуху, морозы, голод. Приспособления.

1. анабиоз (мнимая смерть). Почти полная остановка обмена веществ. – мелкие организмы. При анабиозе организмы теряют до ½ или даже ¾ заключённой в тканях воды У беспозвоночных часто наблюдается явление диапаузы – пережидание неблагоприятных температурных условий, остановившись в своём развитии (стадия яйца, куколки у насекомых и т.д.).

2. скрытая жизнь. Высшие растения не могут выжить, в случае если клетка высохнет. В случае если частичное обезвоживание – выживет. (зимний покой растений, спячка животных, семена в почве,

3. Постоянство внутренней среды, несмотря на колебания внешней среды. Постоянная температура тела, влаги (кактусы). Но много тратится энергии.

4. Избегание неблагоприятных условий. (гнезда, зарываются в снег, перелœет птиц)

Примеры: Семена лотоса в торфе 2000лет., бактерии в льдах Антарктиды. У пингвинов температура 37-38, у северных оленей 38-39. кактусы. Мокрицы в Среднеазиатских сухих степях, Суслик серцебиение 300 ударов и 3.

Эволюционная адаптация

Виды адаптации:

Морфологические (защита от вымерзания: эпифиты – растут на других растениях, фанерофиты- почки защищены яешуйками (деревья, кустарники), криптофиты почки в почве, терофиты – однолетние растения. У животных – запасы жира, масса.

Физиологическая адаптация . : акклиматизация, высвобождение воды из жиров.

Поведенческая – выбор предпочтительного положения в пространстве.

Физическая – регулирование теплоотдачи. Химическая поддержание температуры тела.

Эволюционная адаптация растений и животных к разным факторам среды легла в основу классификации видов.

1) По отношению к физическиме факторам среды

а) влияние температуры на организмы

Пределами толерантности для любого вида являются минимальная и максимальная летальные температуры. Большинство живых существ способно жить при температуре от 0 до 50ºС, что обусловлено свойствами клеток и межклеточной жидкости. Адаптация животных к температуре среды шла в 2 направлениях:

пойкилотермные животные (холоднокровные) – их температура тела меняется в широких пределах исходя из температуры окружающей среды (беспозвоночные, рыбы, земноводные, пресмыкающиеся). Их приспособлением к изменениям температуры является впадение в анабиоз.

гомойотермные животные (теплокровные) – животные, имеющие постоянную температуру тела (птицы (около 40ºС) и млекопитающие, в т.ч. человек (36–37ºС)). Гомойотермные животные могут выдерживать температуру ниже 0ºС. Для этих организмов характерно явление теплорегуляции .

Теплорегуляция (терморегуляция) – способность человека, млекопитающих и птиц поддерживать температуру мозга и внутренних органов в узких определённых границах, несмотря на значительные колебания температуры внешней среды и собственную теплопродукцию.При перегревании – происходит расширение кожных капилляров, и с поверхности тела происходит теплоотдача,– увеличивается потоотделœение, за счёт испарения температура тела охлаждается (человек, обезьяны, непарнокопытные),– у непотеющих животных происходит тепловая одышка (испарение влаги происходит с поверхности ротовой полости и языка).При охлаждении– происходит сужение кожных сосудов, теплоотдача от них уменьшается,– поднимаются перья и волосы и шерсть на поверхности тела, в результате увеличивается воздушная прослойка между ними, являющаяся теплоизолирующей.

Вместе с тем, для теплокровных животных характерны постоянные приспособления к повышенным или пониженным температурам:

1) Варьирование размеров тела. В соответствии с правилом Бергмана : у теплокровных животных размер тела особей в среднем больше у популяций, живущих в более холодных частях ареала распространения вида. Это связано с уменьшением отношения:

.

Чем меньше это отношение, тем меньше теплоотдача.

2) Наличие шерстного и перьевого покрова. У животных, живущих в более холодных областях, увеличивается количество подшерстка, пуха, пуховых перьев у птиц. В условиях сезонности возможна линька, когда в зимнем шерстном покрове больше пуха и подшёрстка, а в летнем – только остевые волосы.

3) Жировая прослойка. Является теплоизолирующей. Особенно распространена у морских животных, обитающих в холодных морях (моржи, тюлени, киты и т.д.)

4) Жировой покров . Покров перьев водоплавающих птиц специальным водонепроницаемым покровом, препятствующим проникновению воды и слипанию перьев, ᴛ.ᴇ. сохраняется воздушная теплоизолирующая прослойка между перьями.

5) Зимняя спячка. Спячка – состояние пониженной жизнедеятельности и обмена веществ, сопровождающееся торможением нервных реакций. Перед впадением в спячку животные накапливают в организме жир и укрываются в убежищах. Спячка сопровождается замедлением дыхания, сердцебиения и др.
Размещено на реф.рф
процессов. Температура тела снижается до 3–4ºС. Некоторые животные (медведи) сохраняют нормальную t тела (это зимний сон ). В отличие от анабиоза холоднокровных животных, во время спячки теплокровные животные сохраняют способность контролировать физиологическое состояние с помощью нервных центров и поддерживать гомеостаз на новом уровне.

6) Миграции животных (характерны для и теплокровных, и холоднокровных) – сезонное явление. Примером являются перелёты птиц.

Адаптация растений к температуре. Большинство растений может существовать при температуре от 0 до 50ºС. При этом активная жизнедеятельность осуществляется при температурах от 10 до 40 ºС. В этом диапазоне температур может происходить фотосинтез. Вегетационный период растений – период со среднесуточными температурами выше +10ºС.

По способу адаптации к изменениям температуры растения делятся на 3 группы:

фанерофиты (деревья, кустарники, лианы) – сбрасывают всœе зелёные части на холодный период, а их почки остаются зимой над поверхностью снега и защищаются покровными чешуйками;

криптофиты (геофиты) – также теряют всю видимую растительную массу на холодный период, сохраняя почки в клубнях, луковицах или корневищах, скрытых в почве.

терофиты – однолетние растения, отмирающие с наступлением холодного сезона, выживают лишь семена или споры.

б) влияние освещённости на организмы

Свет - ϶ᴛᴏ первичный источник энергии, без которого невозможна жизнь на Земле. Свет участвует в фотосинтезе, обеспечивая создание органических соединœений из неорганических веществ растительностью Земли. По этой причине влияние света в большей степени важно для растений. В фотосинтезе участвует часть спектра (от 380 до 760 нм) – область физиологически активной радиации.

По отношению к освещённости выделяются 3 группы растений:

светолюбивые – для таких растений оптимумом является яркий солнечный светтравянистые растения степей и лугов, древесные растения верхних ярусов.

тенелюбивые – для этих растений оптимумом является слабая освещённость – растения нижних ярусов таёжных ельников, лесостепных дубрав, тропических лесов.

теневыносливые – растения, имеющие широкий диапазон толерантности к свету и могут развиваться как при яркой освещённости, так и в тени.

Свет имеет большое сигнальное значение и является основой фотопериодизма.

Фотопериодизм - ϶ᴛᴏ реакция организма на сезонные изменения длины дня. От фотопериодизма зависит время зацветания и плодоношения у растений, начало периода спаривания у животных, время начала миграции у перелётных птиц. Фотопериодизм широко используется в с/х.

в) влияние условий увлажнения на организмы

Условия увлажнения зависят от двух факторов:– количество осадков; – испаряемость (количество влаги, ĸᴏᴛᴏᴩᴏᴇ может испариться при данной температуре)

По отношению к влаге всœе растения делятся на 4 группы:

гидатофиты – водные растения целиком или большей частью погруженные в воду. Οʜᴎ бывают прикреплены корнями к грунту (кувшинка), другие не прикреплены (ряска);

гидрофиты – водные растения, прикреплённые к почве и погруженные в воду только нижними своими частями (рис, рогоз);

гигрофиты – растения влажных местообитаний. Не имеют приспособлений, ограничивающих расход воды (травянистые растения лесной зоны);

мезофиты – растения, переносящие незначительную засуху (большинство древесных растений, злаковые растения степей);

ксерофиты – растения сухих степей и пустынь, имеющие приспособления к недостатку влаги:

а) склерофиты – растения с большой корневой системой, способной всасывать влагу из почвы с большой глубины, и с мелкими листьями или листьями, преобразованными в колючки, что способствует снижению площади испарения (верблюжья колючка);

б) суккуленты – растения, способные накапливать влагу в мясистых листьях и стеблях (кактусы, молочаи).

эфемеры – растения, проходящие свой жизненный цикл за очень короткий срок (период дождей или таяния снегов) и к периоду засухи образующие семена (маки, ирисы, тюльпаны).

Приспособления животных к засухе:

– поведенческие способы (миграция) – характерны для животных саванн в Африке, Индии, Южной Америке;

– образование защитных покровов (раковины улиток, роговые покровы рептилий);

– впадение в анабиоз (рыбы, земноводные в африканских и австралийских пересыхающих водоёмах);

– физиологические способы – образование метаболической воды (воды, образующейся в результате обмена веществ за счёт переработки жиров) – верблюды, черепахи, овцы.

г) влияние движения воздуха на организмы. Движение воздушных масс должна быть в виде их вертикального перемещения – конвекции, или в виде ветра, т. е. горизонтального перемещения. Движение воздуха способствует расселœению спор, пыльцы, семян, микроорганизмов. Анемохоры – приспособления для распространения ветром (парашутики одуванчика, крылья семян клёна и т.д.). Угнетающее действие ветер может оказывать на птиц и других летающих животных

д) влияние движения воды на организмы. Основные виды движения воды – волны и течения.Учитывая зависимость отскорости течения:

– в спокойных водах – у рыб сплюснутое с боков тело (лещ, плотва)

– в быстротекущих водах – тело рыб округлое в сечении (форель).

Вода – плотная среда, в связи с этим в целом всœе водные животные имеют обтекаемую форму тела: как рыбы, так и млекопитающие (тюлени, киты, дельфины), и даже моллюски (кальмары, осьминоги). Самая совершенная морфологическая адаптация к движению в воде – у дельфина, в связи с этим он может развивать в воде очень большие скорости и выполнять сложные маневры.

2) химические факторы среды

а) Химические факторы воздушной среды

Состав атмосферы:‣‣‣ азот –78,08%;‣‣‣ кислород – 20,95 %;‣‣‣ аргон, неон и другие инœертные газы – 0,93 %;‣‣‣ углекислый газ – 0,03 %;‣‣‣ прочие газы 0,01.

Лимитирующим фактором является содержание углекислого газа и кислорода. В приземном слое атмосферы содержание углекислого газа находится в минимуме толерантности, а кислорода – в максимуме толерантности растений по этим факторам.

Адаптация к недостатку кислорода:

а) У почвенных животных и животных, живущих в глубоких норах.

б) У высокогорных животных: – повышение объёма крови,– увеличенное количество эритроцитов (кровяных клеток, переносящих кислород),– повышенное содержание гемоглобина в эритроцитах,– повышенное сродство гемоглобина к кислороду, ᴛ.ᴇ. 1 молекула гемоглобина может переносить больше молекул кислорода, чем у равнинных животных.(ламы, альпаки, горные козлы, снежные барсы, яки, горные куропатки, фазаны).

в) У ныряющих и полуводных животных: – повышенный относительный объём лёгких,– больше объём и давление воздуха в лёгких при вдыхании,– приспособления, характерные для горных животных.(дельфины, киты, тюлени, каланы, морские змеи и черепахи, опуши).

г) у водных животных (гидробионтов) - ϶ᴛᴏ приспособления к использованию кислорода из водного раствора: – наличие жаберного аппарата͵ имеющего большую площадь поверхности,– густая сеть кровеносных сосудов в жабрах, обеспечивающих наиболее полное всасывание кислорода из раствора,– увеличенная поверхность тела, которая является у многих беспозвоночных важным каналом диффузионного поступления кислорода.Рыбы, моллюски, ракообразные).

б) Химические факторы водной среды

а) содержание СО 2 (повышенное содержание углекислого газа в воде может привести к гибели рыб и др.
Размещено на реф.рф
водных животных; с другой стороны при растворении в воде СО 2 , образуется слабая угольная кислота , легко образующая карбонаты (соли угольной кислоты), являющиеся основой скелœетов и раковин водных животных);

б) кислотность среды (инструментом поддержания кислотности являются карбонаты, водные организмы имеют очень узкий диапазон толерантности к этому показателю)

в) солёность воды – содержание растворенных сульфатов, хлоридов, карбонатов, измеряется в промилле ‰ (грамм солей на литр воды). В океане 35 ‰. Максимальная солёность в Мёртвом море (270 ‰). Пресноводные виды не могут обитать в морях, а морские – в реках. При этом, такие рыбы, как лосось, сельдь всю жизнь проводят в море, а для нереста поднимаются в реки.

3. Эдафические факторы – почвенные условия произрастания растений.

а) физические:– водный режим,– воздушный режим,– тепловой режим,– плотность,– структура.

б) химические:– реакция почвы,– элементарный химический состав почвы, – бменная способность.

Важнейшее свойство почвы – плодородие - ϶ᴛᴏ способность почвы удовлетворять потребность растений в питательных веществах, воздухе, биотической и физико-химической среде и на этой базе обеспечивать урожай сельскохозяйственных структур, а также биогенную продуктивность диких форм растительности.

Приспособление растений к засолению:

Солеустойчивые растения называют галофитами (солерос, полыни, солянки) – эти растения произрастают на солонцах и солончаках.

Приспособление организмов к среде - понятие и виды. Классификация и особенности категории "Приспособление организмов к среде" 2017, 2018.

Якутия - край вечной мерзлоты и резко-континентального климата. Средняя температура января в Центральной Якутии — 40°С. Минимальные температуры воздуха -55…-65°С здесь обычны. Сезон с температурами ниже 0°С длится с октября по апрель, так что зима в Якутии – долгий и суровый период. Все живое на этой земле приспосабливается к экстремальным условиям обитания.

Прикоснуться к тайнам якутской зимы и секретам выживания животного мира мы можем посетив единственный в республике зоопарк «Орто-Дойду» Министерства охраны природы Республики Саха (Якутия).Здесь под открытым небом зимуют аборигенные виды: лось, северный олень, косуля, овцебык, волки, рыси, песцы, лисицы, филины. Но есть также виды, не являющиеся представителями фауны Якутии, но успешно адаптировавшиеся — енотовидная собака, олень пятнистый, верблюд, кабан, альпийская галка. Эти животные при наличии кормовой базы успешно переносят морозы, демонстрируя при этом высокие адаптивные способности организма.

При всем многообразии приспособлений живых организмов к воздействию неблагоприятных температурных условий среды выделяют три основных пути: активный, пассивный и избегание неблагоприятных температурных воздействий.

Активисты «Орто-Дойду»

Активный путь - усиление сопротивляемости, развитие регуляторных способностей, дающих возможность осуществления жизненных функций организма, несмотря на отклонения температур от оптимума. Как адаптация к низким температурам у животных формируются такие признаки, как отражательная поверхность тела, пуховой, перьевой и шерстный покровы у птиц и млекопитающих, жировые отложения, которые обеспечивают теплоизоляцию.

К примеру, у таких видов как северный олень, белый медведь шерсть полая и содержит воздух, создавая хорошую изоляцию зимой и сохраняя тепло, подобно тому, как воздух между двумя рамами в домах не дает охлаждаться жилому помещению. У животных (птиц и зверей) подошвы лап могут быть покрытыперьевым и шерстным покровом. Это защитное приспособление против отмораживания лап при передвижении по плотному снегу и льду. Закругленные короткие уши почти скрываются в шерсти, что также предохраняет их от охлаждения во время сильных морозов.

При понижении температуры воздуха многие животные переходят на питание более калорийной пищей. К примеру, белки в теплое время года поедают более ста видов кормов, зимой же питаются главным образом семенами хвойных, богатых жирами. Кормом оленям летом в основном служат травы, зимой - лишайники, содержащие в большом количестве белковые, жировые и сахаристые вещества. У животных, и в первую очередь обитателей полярных областей, с понижением температуры возрастает содержание гликогена в печени, повышается содержание аскорбиновой кислоты в тканях почек. У млекопитающих большое скопление питательных веществ наблюдается в бурой жировой ткани в непосредственной близости от жизненно важных органов - сердца и спинного мозга - и это также имеет приспособительный характер.

Важное место в преодолении отрицательного воздействия низких температур, особенно в зимний период, занимает выбор животными места для жилища, утепление убежищ, гнезд пухом, сухими листьями, углубление нор, закрывание входов в них, принятие особой позы (например, скручивание кольцом, укутывание хвостом), собирание в группы, так называемое «скучивание» и т.д. Некоторые животные согреваются путем пробежек и прыжков.

Животные, обитающие в холодных областях (полярные медведи, киты и др.), имеют, как правило, более крупные размеры. При увеличении размеров уменьшается относительная поверхность тела, а, следовательно, и теплоотдача. Это явление носит название правила Бергмана, согласно которому из двух близких видов теплокровных, отличающихся размерами, более крупный обитает в более холодном климате. А по правилу Алленау многих млекопитающих и птиц северного полушария относительные размеры конечностей и других выступающих частей (ушей, клювов, хвостов) увеличиваются к югу и уменьшаются к северу (для уменьшения теплоотдачи в холодном климате).

В активном состоянии зимой в зоопарке можно наблюдать за рядом копытных животных – представителями семейства оленевых, полорогих, верблюдовых, отряда хищных млекопитающих, а из птиц за якутскими филинами, каменными глухарями и удивительной альпийской галкой.

В 2012 году центром притяжения посетителей в зоопарк несомненно стала самка белого медведя, найденная участниками международного проекта WWF посреди Арктической пустыни в апреле текущего года и получившая имя Колымана. Родилась она, предположительно, в январе, как это обычно происходит в природе. Отважный характер Колыманы позволил выжить ей в суровых условиях Арктики. Сегодня она активна, питается говядиной и рыбой, получает витамины и минералы, рыбий жир.Летом она с удовольствием поедала зелень лапчатки, одуванчика и др. сочных трав. Время и частота кормлений изменялись по мере роста. Сейчас она получает еду 3 раза в сутки. После обеда любит отдохнуть и обязательно, согласно разработанному ею самой режиму дня, ложится спать после обеда. Хотя не все посетители понимают это, и огорчаются, если не удается ее увидеть. У животного обязательно должно быть место для уединения. Это помогает им избегать стрессовых ситуаций и нормализует поведенческие реакции. В новом просторном вольере у Колыманы предостаточно места для игр, купания и уединения. Ввод нового вольера запланирован в первых числах ноября. Белые медведи, кроме беременных самок, зимой не залегают в спячку. Колымана — незапланированное в зоопарке прибавление, но беспокоится о ее пропитании не стоит, ведь хлопоты об обеспечении рыбой легли на плечи сотрудников Авиакомпании «Полярные авиалинии», взявшей ее под опеку.

Еще один арктический вид песец или полярная лисица. По размерам песец немного меньше настоящих лисиц. Распространены песцы по всей тундре: к северу - до побережья океана и к югу - до северной границы леса. Песцы бывают двух окрасок: белые и голубые (точнее, темные). Белый песец становится чисто-белым только зимой. Голубой песец и зимой и летом сплошь темный. Летом песцы питаются в основном леммингами и полевками, а также поедают яйца, птенцов и даже взрослых птиц, в частности белых куропаток, линяющих гусей-гуменников и др. Когда в тундре наблюдается массовое размножение леммингов, у песцов плодовитость повышается до 10-12 щенят в помете, а в скудные годы самки приносят только 5-6 щенят, которых с трудом прокармливают из-за недостатка пищи.

Рядом с песцами в зоопарке поселились лисицы двух цветовых вариаций: рыжая и черно-бурая. Данный вид распространен повсеместно — лисица сумела устроиться и в заполярной тундре, и в сутолоке больших городов, и в пустынях Центральной Америки, и в азиатских степях. Окраска ее знаменитой пушистой шубки меняется от светло-каштановой до огненно-рыжей, брюшко черное или белое, хвост нередко украшен белым кончиком. Всего существуют 48 подвидов рыжей лисицы, не говоря о палевых, гибридных и черно-бурых, или серебристых, разновидностях.

Каменный глухарь – один из двух видов глухарей, являющихся самыми крупными представителями из семейства тетеревиных. Глухари относятся к зимующим птицам. Зимой они пользуются подснежными камерами, где проводят ночь, питаются преимущественно верхушечными побегами лиственницы, а лапы глухаря покрыты густым оперением, из-под оперения выступают только когти.

Из сонного царства

Пассивный путь - это подчинение жизненных функций организма ходу внешних температур. Недостаток тепла вызывает угнетение жизнедеятельности, что способствует экономному использованию энергетических запасов. И как итог - повышение устойчивости клеток и тканей организма. Элементы пассивного приспособления, или адаптации, присущи и эндотермным животным, обитающим в условиях крайне низких температур. Выражается это в снижении уровня обмена, замедлении скорости роста и развития, позволяющее экономнее расходовать ресурсы в сравнении с быстро развивающимися видами. У млекопитающих и птиц преимущества пассивного приспособления в неблагоприятные периоды года используют виды, которые обладают способностью впадать в спячку или оцепенение.

В зоопарке впадают в спячку бурые медведи, барсуки, сурки. Бурые медведи в зоопарке залегают в спячку во второй половине ноября и спят до третьей декады марта. Учеными доказано, что медведи в настоящую спячку не погружаются, а их состояние правильнее называть зимним сном: они сохраняют полную жизнеспособность и чуткость, в случае опасности в природе покидают берлогу и после блужданий по лесу занимают новую. Температура тела бурого медведя во сне колеблется между 29 и 34 градусами. Во время зимнего сна звери расходуют мало энергии, существуя исключительно за счет накопленного осенью жира, и таким образом с наименьшими лишениями переживают суровый зимний период. За период зимовки медведь теряет до 80 кг жира.

Впервые в Якутии в условиях зоопарка залегают в спячку барсуки в специально подготовленных для них домиках с утолщенными и утепленными стенками, где они устраивают из сена уютную гнездовую камеру и погружаются в зимний сон. При необходимости они могут выйти подкормится и пополнить свои жировые запасы.

Самые хитрые

Избегание неблагоприятных температурных воздействий - общий способ для всех организмов. Выработка жизненных циклов, когда наиболее уязвимые стадии развития проходят в благоприятные по температурным условиям периоды года. Избегая низких температур, в природе перелетные птицы улетают в теплые края, а наши пернатые переселяются в зимние квартиры. Из 50 видов птиц, в открытых вольерах остаются лишь филины, глухари, да альпийская галка. Остальным, включая и крупных хищных птиц, необходим более мягкий климат. При этом, для некоторых видов, тех же хищных птиц и журавлейтемпература в зимних помещениях поддерживается невысокая – от +10 до -10, а фазанам и другим птицам нужно тепло. В зимнее время в зоопарке кроме вышеперечисленных птиц, устойчивых к морозам, можно наблюдать за журавлями – серым, белым (стерхом) и японским, содержащимся в новых вольерах с большими смотровыми витринами.

Зоопарк открыт для посетителей круглый год ежедневно с 10-00 до 17-00 зимой.

Если Вам не страшны якутские морозы, ждем Вас в уникальном зоологическом парке, где под северным небом Якутии поселились более 170 видов животных — от тропических тараканов до крупных хищных млекопитающих.

Температурные границы существования видов. Пути их приспо­собления к колебаниям температуры.

Температура отражает среднюю кинетическую скорость атомов и молекул в какой-либо системе. От температуры окружающей среды зависит температура организмов и, следовательно, скорость всех химических реакции, составляющих обмен веществ.

Поэтому границы существования жизни - это температуры, при которых возможно нормальное строение и функционирование белков, в среднем от 0 до +50°С. Однако целый ряд организмов обладает специализированными ферментными системами и приспособлен к активному существованию при температуре тела, выходящей за указанные пределы.

Виды, предпочитающие холод, относят к экологической группе криофилов. Они могут сохранять активность при температуре клеток до

8…-10°С, когда жидкости их тела находятся в переохлажденном состоянии. Криофилия характерна для представителей разных групп наземных организмов: бактерий, грибов, лишайников, мхов, членистоногих и других существ обитающих в условиях низких температур: в тундрах, арктических и антарктических пустынях, в высокогорьях, холодных морях и т. п. Виды, оптимум жизнедеятельности которых приурочен к области высоких температур, относят к группе термофилов. Термофилией отличаются многие группы микроорганизмов и животных, например нематод, личинок насекомых, клещей и других организмов, встречающихся на поверхности почвы в аридных районах, в разлагающихся органических остатках при их саморазогревании и т.д.

Температурные границы существования жизни намного раздвигаются, если учесть выносливость многих видов в латентном состоянии. Споры некоторых бактерий выдерживают в течение нескольких минут нагревание до +180°С. В лабораторных экспериментальных условиях семена, пыльца и споры растений, нематоды, коловратки, цисты простейших и ряд других организмов после обезвоживания переносили температуры, близкие к абсолютному нулю (до - 271,16°С), возвращаясь затем к активной жизни. В этом случае цитоплазма становится тверже гранита, все молекулы находятся в состоянии почти полного покоя и никакие реакции невозможны. Приостановка всех жизненных процессов организма носит название анабиоза. Из состояния анабиоза живые существа могут возвратиться к нормальной активности только в том случае, если не была нарушена структура макромолекул в их клетках.



Существенную экологическую проблему представляет нестабильность, изменчивость температур окружающей организмы среды. Изменения температуры приводят также к изменениям стереохимической специфичности макромолекул: третичной и четвертичной структуры белков, строения нуклеиновых кислот, организации мембран и других структур клетки.

Повышение температуры увеличивает количество молекул, обладающих энергией активации. Коэффициент, показывающий во сколько раз изменяется скорость реакций при изменении температуры на 10°С, обозначают G 10 . Для большинства химических реакций величина этого коэффициента равна 2 – 3 (закон Вант-Гоффа). Сильное понижение температуры вызывает опасность такого замедления обмена веществ, при котором окажется невозможным осуществление основных жизненных функций. Излишнее усиление метаболизма при повышении температуры также может вывести организм из строя еще задолго до теплового разрушения ферментов, так как резко возрастают потребности в пище и кислороде, которые далеко не всегда могут быть удовлетворены.

Так как величина G 10 для разных биохимических реакций различна, то изменения температуры могут сильно нарушить сбалансированность обмена веществ, если скорости сопряженных процессов изменятся различным образом.

В ходе эволюции у живых организмов выработались разнообразные приспособления, позволяющие регулировать обмен веществ при изменениях температуры окружающей среды. Это достигается двумя путями: 1) различными биохимическими и физиологическими перестройками (изменение набора, концентрации и активности ферментов, обезвоживание, понижение точки замерзания растворов тела и т.д); 2) поддержанием температуры тела на более стабильном уровне, чем температура окружающей среды, что позволяет не слишком нарушать сложившийся ход биохимических реакций.

Источником теплообразования в клетках являются два экзотермических процесса: окислительные реакции и расщепление АТФ. Энергия, освобождающаяся при втором процессе, идет, как известно, на осуществление всех рабочих функций клетки, а энергия окисления - на восстановление АТФ. Но и в том и в другом случае часть энергии, согласно второму закону термодинамики, рассеивается в виде тепла. Тепло, вырабатываемое живыми организмами как побочный продукт биохимических реакций, может служить существенным источником повышения температуры их тела.

Однако представители большинства видов не обладают достаточно высоким уровнем обмена веществ и не имеют приспособлений, позволяющих удерживать образующееся тепло. Их жизнедеятельность и активность зависят прежде всего от тепла, поступающего извне, а температура тела - от хода внешних температур. Такие организмы называют пойкилотермными. Пойкилотермия свойственна всем микроорганизмам, растениям, беспозвоночным животным и значительной части хордовых.

Гомойотермные животные способны поддерживать постоянную оптимальную температуру тела независимо от температуры среды.

Гомойотермия характерна только для представителей двух высших классов позвоночных - птиц и млекопитающих. Частный случай гомойотермии - гетеротермия - свойствен животным, впадающим в неблагоприятный период года в спячку или оцепенение. В активном состоянии они поддерживают высокую температуру тела, а в неактивном - пониженную, что сопровождается замедлением обмена веществ. Таковы суслики, сурки, ежи, летучие мыши, сони, стрижи, колибри и др. У разных видов механизмы, обеспечивающие их тепловой баланс и температурную регуляцию, различны. Они зависят как от эволюционного уровня организации группы, так и от образа жизни вида.

Эффективные температуры развития пойкилотермных организмов . Зависимость темпов роста и развития от внешних температур для растений и пойкилотермных животных дает возможность рассчитать скорость прохождения их жизненного цикла в конкретных условиях. После холодового угнетения нормальный обмен веществ восстанавливается для каждого вида при определенной температуре, которая называется температурным порогом развития. Чем больше температура среды превышает пороговую, тем интенсивнее протекает развитие и, следовательно, тем скорее завершается прохождение отдельных стадий и всего жизненного цикла организма.

Таким образом, для осуществления генетической программы развития пойкилотермным организмам необходимо получить извне определенное количество тепла. Это тепло измеряется суммой эффективных температур. Под эффективной температурой понимают разницу между температурой среды и температурным порогом развития организмов. Для каждого вида она имеет верхние пределы, так как слишком высокие температуры уже не стимулируют, а тормозят развитие.

И порог развития, и сумма эффективных температур для каждого вида свои. Они зависят от исторической приспособленности вида к условиям жизни. Для семян растений умеренного климата, например гороха, клевера, порог развития низкий: их прорастание начинается при температуре почвы от 0 до +1°С; более южные культуры. - кукуруза и просо - начинают прорастать только при +8…+10°С, а семенам финиковой пальмы для начала развития нужно прогревание почвы до +30°С.

Сумму эффективных температур рассчитывают по формуле

где X - сумма эффективных температур, Т - температура окружающей среды, С - температура порога развития и t- число часов или дней с температурой, превышающей порог развития.

Зная средний ход температур в каком-либо районе, можно рассчитать появление определенной фазы или число возможных генераций интересующего нас вида. Так, в климатических условиях Северной Украины может выплодиться лишь одна генерация бабочки яблонной плодожорки, а на юге Украины - до трех, что необходимо учитывать при разработке мер защиты садов от вредителей. Сроки цветения растений зависят от того, за какой период они набирают сумму необходимых температур. Для зацветания мать-и-мачехи под Ленинградом, например, сумма эффективных температур равна 77, кислицы - 453, земляники - 500, а желтой акации - 700 °С.

Сумма эффективных температур, которую нужно набрать для завершения жизненного цикла, часто ограничивает географическое распространение видов. Например, северная граница древесной растительности приблизительно совпадает с июльскими изотермами + 10... + 12°С. Севернее уже не хватает тепла для развития деревьев и зона лесов сменяется безлесными тундрами.

Расчеты эффективных температур необходимы в практике сельского и лесного хозяйства, при борьбе с вредителями, интродукции новых видов и т. п. Они дают первую, приближенную основу для составления прогнозов. Однако на распространение и развитие организмов влияет множество других факторов, поэтому в действительности температурные зависимости оказываются более сложными.

Большой размах температурных колебаний - отличительная черта наземной среды. В большинстве районов суши суточные и годовые амплитуды температур составляют десятки градусов. Даже в условиях влажных тропиков, где средние месячные температуры изменяются в течение года не более чем на 1-2°С, суточные различия значительно выше. В бассейне Конго они составляют в среднем 10-12°С (максимум +36, минимум +18°С). Особенно значительны изменения температуры воздуха в приполярных континентальных районах и в пустынях. В окрестностях Якутска среднеянварская температура воздуха -43°С, среднеиюльская +19°С, а годовой размах от -64 до +35°С, т. е. около 100°С. Сезонный размах температуры воздуха в пустынях Средней Азии 68-77°С, а суточный 25-38°С. Еще значительнее эти колебания на поверхности почвы.

Устойчивость к температурным изменениям среды у наземных обитателей очень различна, в зависимости от того, в. каком конкретном местообитании протекает их жизнь. Однако в целом наземные организмы значительно более эвритермны по сравнению с водными.

Температурные адаптации наземных, растений. Растения, будучи организмами неподвижными, должны существовать при том тепловом режиме, который создается в местах их произрастания. Высшие растения умеренно холодного и умеренно теплого поясов эвритермны. Они переносят в активном состоянии колебания температур, достигающие 60°С. Если учесть и латентное состояние, то эта амплитуда может увеличиться до 90°С и более. Например, даурская лиственница выдерживает близ Верхоянска и Оймякона зимние морозы до -70°С. Растения дождевых тропических лесов стенотермны. Они не переносят ухудшения теплового режима и даже положительные температуры +5... + 8°С для них губитель­ны. Еще более стенотермны некоторые криофильные зеленые и диатомовые водоросли в полярных льдах и на снежных полях высокогорий, которые живут только при температуре около 0°С.

Тепловой режим растений весьма изменчив. Основные пути адаптации к температурным изменениям среды у растений - это биохимические, физиологические и некоторые морфологические перестройки. Растения отличаются очень слабыми возможностями регуляции собственной температуры. Тепло, образующееся в процессе обмена веществ, благодаря трате его на транспирацию, большой излучающей поверхности и несовершенным механизмам регуляции быстро отдастся окружающей среде. Основное значение в жизни растений имеет тепло, получаемое извне. Однако совпадение температур тела растения и среды скорее надо считать исключением, чем правилам, из-за разницы скоростей получения и, отдачи тепла.

Температура растения вследствие нагревания солнечными лучами может быть выше температуры окружающего его воздуха и почвы. Иногда эта разница доходит до 24°С, как, например, у подушковидного кактуса Terphrocactus floccosus, растущего в перуанских Андах на высоте около 4000 м. При сильной транспирации температура растения становится ниже температуры воздуха. Транспирация через устьица - регулируемый растением процесс. При повышении температуры воздуха она усиливается, если возможна быстрая подача необходимого количества воды к листьям. Это спасает растение от перегрева, подача необходимого количества воды к листьям. Это спасает растение от перегрева, понижая его температуру на 4 – 6, а иногда на 10 – 15°С.

Температура разных органов растения различна в зависимости от их расположения относительно падающих лучей и разных по степени нагретости слоев воздуха. Тепло поверхности почвы и приземного слоя воздуха особенно важно для тундровых и высокогорных растений. Приземистость, шпалерные и подушковидные формы роста, прижатость листьев розеточных и полурозеточных побегов к субстрату у арктических и высокогорных растений можно рассматривать как адаптацию их к лучшему использованию тепла в условиях, где его мало.

В дни с переменной облачностью надземные органы растений испытывают резкие перепады температуры. Например, у дубравного эфемероида пролески сибирской, когда облака закрывают солнце, температура листьев может упасть с +25…+27 до +10...+15°С, а затем, когда растения снова освещаются солнцем, поднимается до прежнего уровня. В пасмурную погоду температура листьев и цветков близка к температуре окружающего воздуха, а часто бывает на несколько градусов ниже. У многих растений разница температур заметна даже в пределах одного листа. Обычно верхушка и края листьев холоднее, поэтому при ночном охлаждении в этих местах в первую очередь конденсируется роса и образуется иней.

Чередование более низких ночных и более высоких дневных температур (термопериодизм) благоприятно для многих видов. Растения континентальных областей лучше всего растут, если амплитуда суточных колебаний составляет 10-15°С, большинство растений умеренной зоны - при амплитуде в 5-10°С, тропические - при амплитуде всего в 3°С, а некоторые из них (шерстяное дерево, сахарный тростник, арахис) - без суточного ритма температур.

В разные фазы онтогенеза требования к теплу различны. В умеренном поясе прорастание семян происходит обычно при более низких температурах, чем цветение, а для цветения требуется более высокая температура, чем для созревания плодов.

По степени адаптации растений к условиям крайнего дефицита тепла можно выделить три группы:

1) нехолодостойкие растения - сильно повреждаются или гибнут при температурах выше точки замерзания воды. Гибель связана с инактивацией ферментов, нарушением обмена нуклеиновых кислот и белков, проницаемости мембран и прекращением тока ассимилятов. Это растения дождевых тропических лесов, водоросли теплых морей;

2) не морозостойкие растения - переносят низкие температуры, но гибнут, как только в тканях начинает образовываться лед. При наступлении холодного времени года у них повышается концентрация осмотически активных веществ в клеточном соке и цитопазме, что понижает точку замерзания до -5...-7°С. Вода в клетках может охлаждаться ниже точки замерзания без немедленного образования льда. Переохлажденное состояние неустойчиво и длится чаще всего несколько часов, что, однако, позволяет растениям переносить заморозки. Таковы некоторые вечнозеленые субтропические виды. В период вегетации все листостебельные растения иеморозостойки;

3) льдоустоичивые, или морозоустойчивые, растения - произрастают в областях с сезонным климатом, с холодными зимами. Во время сильных морозов надземные органы деревьев и кустарников промерзают, но тем не менее сохраняют жизнеспособность.

Растения подготавливаются к перенесению морозов постепенно, проходя предварительную закалку после того, как заканчиваются ростовые процессы. Закалка заключается в накоплении в клетках сахаров (до 20-30%), производных углеводов, некоторых аминокислот и других защитных веществ, связывающих воду. При этом морозоустойчивость клеток повышается, так как связанная вода труднее оттягиваемся образующимися в тканях кристаллами льда. Ультраструктуры и ферменты перестраиваются таким образом, что клетки переносят обезвоживание, связанное с образованием льда.

Оттепели в середине, а особенно в конце зимы вызывают быстрое снижение устойчивости растении к морозам. После окончания зимнего покоя закалка утрачивается. Весенние заморозки, наступившие внезапно, могут повредить тронувшиеся в рост побеги и особенно цветке даже у морозоустойчивых растений.

По степени адаптации к высоким температурам можно выделить следующие группы организмов:

1) нежаростойкие виды - повреждаются уже при +30...+40°С (эукариотические водоросли, водные цветковые, наземные мезофиты);

2) жаровыносливые эукариоты - растения сухих местообитаний с сильной инсоляцией (степей, пустынь, саванн, сухих субтропиков и т. п.); переносят получасовое нагревание до +50...+60°С;

3) жароустойчивые прокариоты - термофильные бактерии и некоторые виды сине-зеленых водорослей, могут жить в горячих источниках при температуре +85...+90°С.

Некоторые растения регулярно испытывают влияние пожаров, когда температура кратковременно повышается до сотен градусов. Пожары особенно часты в саваннах, в сухих жестколистных лесах и кустарниковых зарослях типа чапарраля. Там выделяют группу растений пирофитов, устойчивых к пожарам. У деревьев саванн на стволах толстая корка, пропитанная огнеупорными веществами, надежно защищающая внутренние ткани. Плоды и семена пирофитов имеют толстые, часто одревесневшие покровы, которые растрескиваются, будучи опалены огнем.

Наиболее общие адаптации, позволяющие избегать перегрева, - повышение термоустойчивости протопласта в результате закаливания, охлаждение тела путем повышенной транспирации, отражение и рассеивание падающих на растение лучей благодаря глянцевитой поверхности листьев или густому опушению из светлых волосков, уменьшение тем или иным способом нагреваемой площади. У многих тропических растений из семейства бобовых при температуре воздуха выше +35°С листочки сложного листа складываются, чем вдвое сокращается поглощение радиация. У растений жестколистных лесов и кустарниковых группировок, растущих при сильной летней инсоляции, листья повернуты ребром к полуденным лучам солнца, что помогает избегать перегревания.

Температурные адаптации животных . В отличие от растений животные, обладающие мускулатурой, производят гораздо больше собственного, пнугрсппего тепла. При сокращении мышц освобождается значительно больше тепловой энергии, чем при функционировании любых других органон и тканей, так как КПД использования химической энергии для совершения мышечной работы относительно низок. Чем мощнее и активнее мускулатура, тем больше тепла может генерировать животное. По сравнению с растениями животные обладают более разнообразными возможностями регулировать, постоянно или временно, температуру собственного тела. Основные пути температурных адаптации у животных следующие:

1) химическая терморегуляция - активное увеличение теплопродукции в ответ на понижение температуры среды;

2) физическая терморегуляция - изменение уровня теплоотдачи, способность удерживать тепло или, наоборот, рассеивать его избыток. Физическая терморегуляция осуществляется благодаря особым анатомическим и морфологическим чертам строения животных: волосяному и перьевому покровам, деталям устройств кровеносной системы, распределению жировых запасов, возможностям испарительной теплоотдачи и т. п.;

3) поведение организмов. Перемещаясь в пространстве или изменяя свое поведение более сложным образом, животные могут активно избегать крайних температур. Для многих животных поведение является почти единственным и очень эффективным способом поддержания теплового баланса.

Пойкилотермные животные отличаются более низким уровнем обмена веществ по сравнению с гомойотермными даже при одинаковой температуре тела. Например, пустынная игуана при температуре +37°С Потребляет кислорода в 7 раз меньше, чем грызуны такой же величины. Из-за пониженного уровня обмена собственного тепла у пойкилотермных животных вырабатывается мало и, следовательно, возможности химической терморегуляции у них ничтожны. Физическая терморегуляция развита также слабо. Для пойкилотермных особенно сложно противостоять недостатку тепла. С понижением температуры среды все процессы жизнедеятельности сильно замедляются и животные впадают в оцепенение, В таком неактивном состоянии они обладают высокой холодоустойчивостью, которая обеспечивается в основном биохимическими плантациями. Чтобы перейти к активности, животные сначала должны получить, определенное количество тепла извне.

В известных пределах пойкилотермные животные способны регулировать поступление в тело наружного тепла, ускоряя нагревание или, наоборот, избегая перегрева. Основные способы регуляции температуры тела у пойкилотермных поведенческие - перемена позы, активный поиск благоприятных микроклиматических условий, смена мест обитания, целый ряд специализированных форм поведения, направленных на поддержание условий окружающей среды и создание нужного микроклимата (рытье нор, сооружение гнезд и т. д.).

Переменой позы животное может усилить или ослабить нагревание тела за счет солнечной радиации. Например, пустынная саранча в прохладные утренние часы подставляет солнечным лучам широкую боковую поверхность тела, а в полдень - узкую спинную. В сильную жару животные прячутся в тень, скрываются в норах. В пустынях днем, например, некоторые виды ящериц и змей взбираются на кусты, избегая соприкосновения с раскаленной поверхностью почвы. К зиме многие животные ищут убежища, где ход температур более сглажен по сравнению с открытыми местами обитания. Еще более сложны формы поведения общественных насекомых: пчел, муравьев, термитов, которые строят гнезда с хорошо регулируемой внутри них температурой, почти постоянной в период активности насекомых.

У отдельных видов отмечена способность и к химической терморегуляции. Многие пойкилотермные животные способны поддерживать оптимальную температуру тела за счет работы мышц, однако с прекращением двигательной активности тепло перестает вырабатываться и быстро рассеивается из организма по причине несовершенства механизмов физической терморегуляции. Например, шмели разогревают тело специальными мышечными сокращениями - дрожью - до +32...+33°С, что дает им возможность взлетать и кормиться в прохладную погоду.

У некоторых видов существуют также приспособления к уменьшению или усилению теплоотдачи, т. е. зачатки физической терморегуляции. Ряд животных избегает перегревания, усиливая потерю тепла через испарение. Лягушка за час при +20°С теряет на суше 7770 Дж, что в 300 раз больше ее собственной теплопродукции. Многие рептилии при приближении температуры к верхней критической начинают тяжело дышать или держать рот открытым, усиливая отдачу воды со слизистых оболочек.

Гомойотермия развилась из пойкилотермии путем усовершенствования способов регуляции теплообмена. Способность к такой регуляции слабо выражена у детенышей млекопитающих и птенцов и полностью проявляется лишь во взрослом состоянии.

Взрослые гомойотермные животные отличаются настолько эффективной регуляцией поступления и отдачи тепла, что это позволяет им поддерживать постоянную оптимальную температуру тела во все времена года. Механизмы терморегуляции у каждого вида множественны и разнообразны. Это обеспечивает большую надежность механизма поддержания температуры тела. Такие обитатели севера, как песец, заяц-беляк, тундряная куропатка, нормально жизнедеятельны и активны даже в самые сильные морозы, когда разница температуры воздуха и тела составляет свыше 70°С.

Чрезвычайно высокая, сопротивляемость гомойотермных животных перегреванию была блестяще продемонстрирована около двухсот лет назад в опыте доктора Ч. Блэгдена в Англии. Вместе о несколькими друзьями и собакой он провел 45 мин в сухой камере при температуре +126°С без последствий для здоровья. В то же время кусок мяса, взятый в камеру, оказался сваренным, а холодная вода, испарению которой препятствовал слой масла, нагрелась до кипения.

У теплокровных животных очень высокая способность к химическом терморегуляции. Они отличаются высокой интенсивностью обмена веществ и выработкой большого количества тепла.

В противоположность пойкилотермным при действии холода в организме гомойотермных животных окислительные процессы не ослабевают, а усиливаются, особенно в скелетных мышцах. У многих животных отмечается мышечная дрожь, приводящая к выделению дополнительного тепла. Кроме того, клетки мышечной и многих других тканей выделяют тепло и без осуществления рабочих функций, приходя в состояние особого терморегуляционного тонуса. Тепловой эффект мышечного сокращения и тсрморегуляционного тонуса клеток резко возрастает при снижении температуры.

При продуцировании дополнительного тепла особенно усиливается обмен липидов, так как нейтральные жиры содержат основной запас химической энергии. Поэтому жировые запасы животных обеспечивают лучшую терморегуляцию. Млекопитающие обладают даже специализированной бурой жировой тканью, в которой вся освобождающаяся химическая энергия, вместо того чтобы переходить в связи АТФ, рассеивается в виде тепла, т. е. идет на обогревание организма. Бурая жировая ткань наиболее развита у животных холодного климата.

Поддержание температуры за счет возрастания теплопродукции требует большого расхода энергии, поэтому животные при усилении химической терморегуляции либо нуждаются в большом количестве пищи, либо тратят много жировых запасов, накопленных ранее. Например, бурозубка крошечная имеет исключительно высокий уровень обмена. Чередуя очень короткие периоды сна и активности, она деятельна в любые часы суток, не впадает в спячку и в день съедает корма и 4 раза больше собственной массы. Частота серцебиения у бурозубок до 1000 ударов в минуту. Также и птицам, остающимся на зиму, нужно много корма; им страшны не столько морозы, сколько бескормица. Так, при хорошем урожае семян ели и сосны клесты зимой даже выводят птенцов.

Усиление химической терморегуляции, таким образом, имеет свои пределы, обусловленные возможностью добывания пищи.

При недостатке корма зимой такой тип терморегуляции экологически невыгоден. Он, например, слабо развит у всех животных, обитающих за полярным кругом: песцов, моржей, тюленей, белых медведей, северных оленей и др. Для обитателей тропиков химическая терморегуляция также не характерна, поскольку у них практически не возникает необходимости в дополнительном продуцировании тепла.

Физическая терморегуляция экологически более выгодна, так как адаптация к холоду осуществляется не за счет дополнительной выработки тепла, а за счет сохранения его в теле животного. Кроме того, возможна, защита от перегрева путем усиления теплоотдачи во внешнюю среду. В филогенетическом ряду млекопитающих - от насекомоядных к рукокрылым, грызунам и хищникам - механизмы физической терморегуляции становятся все более совершенными и разнообразными. К ним следует отнести рефлекторное сужение и расширение кровеносных сосудов кожи, меняющие ее теплопроводность, изменение теплоизолирующих свойств меха и перьевого покрова, противоточный теплообмен при кровоснабжении отдельных органов, регуляцию испарительной теплоотдачи.

Густой мех млекопитающих, перьевой и особенно пуховый покров птиц позволяют сохранять вокруг тела прослойку воздуха с температурой, близкой к температуре тела животного, и тем самым уменьшить теплоизлучение во внешнюю среду. Теплоотдача регулируется наклоном волос и перьев, сезонной сменой меха и оперения. Исключительно теплый зимний мех животных Заполярья позволяет им в холода обходиться без повышения обмена веществ и снижает потребность в пище. Например, песцы на побережье Северного Ледовитого океана зимой потребляют пищи даже меньше, чем летом.

У животных холодного климата слой подкожной жировой клетчатки распределен по всему телу, так как жир - хороший теплоизолятор. У животных жаркого климата подобное распределение жировых запасов приводило бы к гибели от перегрева из-за невозможности выведения избытка тепла, поэтому жир у них запасается локально, в отдельных частях тела, не мешая теплоизлучению с общей поверхности (верблюды, курдючные овцы, зебу и др.).

Системы противоточного теплообмена, помогающие поддерживать постоянную температуру внутренних органов, обнаружены в лапах и хвостах у сумчатых, ленивцев, муравьедов, полуобезьян, ластоногих, китов, пингвинов, журавлей и др.

Эффективным механизмом регуляции теплообмена служит испарение воды путем потоотделения или через влажные слизистые оболочки полости рта и верхних дыхательных путей. Так как теплота парообразования воды велика (2,3*10 6 Дж/кг), таким путем выводится из организма много избыточного тепла. Способность к образованию пота у разных видов очень различна. Человек при сильной жаре может выделить до 12 л пота в день, рассеивая тепло в десятикратном количестве по сравнению с нормой. Выделяемая вода, естественно, должна возмещаться через питье. У некоторых животных испарение идет только через слизистые оболочки рта. У собаки, для которой одышка - основной способ испарительной терморегуляции, частота дыхания при этом доходит до 300-400 вдохов в минуту. Регуляция температуры через испарение требует траты организмом воды и поэтому возможна не во всех условиях существования.

Немаловажное значение для поддержания температурного баланса имеет отношение поверхности тела к его объему, так как в конечном счёте масштабы продуцирования тепла зависят от массы животного, а теплообмен идет через его покровы.

Связь размеров и пропорций тела животных с климатическими условиями их обитания была подмечена еще в XIX в. Согласно правилу К. Бергмана, если два близких вида теплокровных отличаются размерами, то более крупный обитает в более холодном, а мелкий - в теплом климате. Бергман подчеркивал, что эта закономерность проявляется лишь в том случае, если виды не различаются другими приспособлениями к терморегуляции.

Д. Аллен в 1877 г. подметил, что у многих млекопитающих и птиц северного полушария относительные размеры конечностей и различных выступающих частей тела (хвостов, ушей, клювов) увеличиваются к югу. Терморегуляционное значение отдельных участков тела далеко не равноценно. Выступающие части имеют большую относительную поверхность, которая выгодна в условиях жаркого климата. У многих млекопитающих, например, особое значение для поддержания теплового баланса имеют уши, снабженные, как правило, большим количеством кровеносных сосудов. Огромные уши африканского слона, маленькой пустынной лисички фенека, американского зайца превратились в специализированные органы терморегуляции.

Рис. 11. Относительный размер ушных раковин у зайцев.

Слева направо: беляк; толай; американский заяц.

При адаптации к холоду проявляется закон экономии поверхности, так как компактная форма тела с минимальным отношением площади к объему наиболее выгодна для сохранения тепла. В некоторой степени это свойственно и растениям, образующим в северных тундрах, полярных пустынях и высоко в горах плотные подушечные формы с минимальной поверхностью теплоотдачи.

Поведенческие способы регуляции теплообмена для теплокровных животных не менее важны, чем для пойкилотермных, и также чрезвычайно разнообразны - от изменения позы и поисков укрытий до сооружения сложных нор, гнезд, ближних и дальних миграций.

В норах роющих животных ход температур сглажен тем сильнее, чем больше глубина норы. В средних широтах на расстоянии 150 см от поверхности почвы перестают ощущаться даже сезонные колебания температуры. В особенно искусно построенных гнездах также поддерживается ровный, благоприятный микроклимат. В войлокообразном гнезде синицы-ремеза, имеющем лишь один узкий боковой вход, тепло и сухо в любую погоду.

Особый интерес представляет групповое поведение животных в целях терморегуляции. Например, некоторые пингвины в сильный мороз и бураны сбиваются в плотную кучу, так называемую «черепаху». Особи, оказавшиеся с краю, через некоторое время пробиваются внутрь, и «черепаха» медленно кружится и перемещается. Внутри такого скопления температура поддерживается около +37°С даже в самые сильные морозы. Обитатели пустынь верблюды в сильную жару также сбиваются вместе, прижимаясь друг к другу боками, но этим достигается противоположный эффект - предотвращение сильного нагревания поверхности тела солнечными лучами. Температура в центре скопления животных равна температуре их тела, +39°С, тогда как шерсть на спине и боках крайних особей нагревается до +70 С С.

Сочетание эффективных способов химической, физической и поведенческой терморегуляции при общем высоком уровне окислительных процессов в организме позволяет гомойотермным животным поддерживать свой тепловой баланс на фоне широких колебаний внешней температуры.

Экологические выгоды пойкилотермии и гомойотермии. Пойки-лотермные животные из-за общего низкого уровня обменных процессов достаточно активны только вблизи от верхних температурных границ существования. Обладая лишь отдельными терморегуляторными реакциями, они не могут обеспечить постоянства теплообмена. Поэтому при колебаниях температуры среды активность пойкилотермных прерывиста. Овладение местообитаниями с постоянно низкими температурами для холоднокровных животных затруднительно. Оно возможно только при развитии холодовой стенотермии и доступно в наземной среде лишь мелким формам, способным использовать преимущества микроклимата.

Подчинение температуры тела температуре среды имеет, однако, ряд преимуществ. Снижение уровня обмена при действии холода экономит энергетические затраты, резко уменьшает потребность в пище.

В условиях сухого жаркого климата пойкилотермность позволяет избегать излишних потерь воды, так как практическое отсутствие различий между температурами тела и среды не вызывает дополнительного испарения. Высокие температуры пойкилотермные животные переносят легче и с меньшими энергетическими затратами, чем гомойотермные, которые тратят много энергии на удаление избытка тепла из тела.

Организм гомойотермного животного всегда функционирует только в узком диапазоне температур. За этими пределами для гомойотермных невозможно не только сохранение биологической активности, но и переживание в угнетенном состоянии, так как выносливость к значительным колебаниям температуры тела ими потеряна. Зато, отличаясь высокой интенсивностью окислительных процессов в организме и обладая мощным комплексом терморегуляционных средств, гомойотермные животные могут поддерживать для себя постоянный температурный оптимум при значительных отклонениях внешних температур.

Работа механизмов терморегуляции требует больших энергетических затрат, для восполнения которых животное нуждается в усиленном питании. Поэтому единственно возможным состоянием животных с регулируемой температурой тела является состояние постоянной активности. В холодных районах ограничивающим фактором в их распространении является не температура, а возможность регулярного добывания пищи.

Влажность.

Адаптации организмов

К водному режиму

Наземно-воздушной среды

Все химические процессы, протекающие в организме, зависят от температуры. Изменения тепловых условий, часто наблюдаемые в природе, глубоко отражаются на росте, развитии и других проявлениях жизнедеятельности животных и растений. Различают организмы с непостоянной температурой тела пойкилотермные и организмы с постоянной температурой тела гомойтермные. Пойкилотермные животные целиком зависят от температуры окружающей среды, тогда как гомойтермные способны поддерживать постоянную температуру тела независимо от изменений температуры окружающей среды. Подавляющее большинство наземных растений и животных в состоянии активной жизнедеятельности не переносит отрицательной температуры и погибает. Верхний температурный предел жизни неодинаков для разных видов редко выше 4045 С. Некоторые цианобактерии и бактерии обитают при температурах 7090 С, в горячих источниках могут жить и некоторые моллюски (до 53 С). Для большинства наземных животных и растений оптимум температурных условий колеблется в довольно узких пределах (1530 С). Верхний порог температуры жизни определяется температурой свертывания белков, поскольку необратимое свертывание белков (нарушение структуры белков) возникает при температуре около 60 С.

Пойкилотермные организмы в процессе эволюции выработали различные приспособления к изменяющимся температурным условиям среды. Главным источником поступления тепловой энергии у пойкилотермных животных внешнее тепло. У пойкилотермных организмов выработались различные приспособления к низкой температуре. Некоторые животные, например, арктические рыбы, обитающие постоянно при температуре 1,8 С, содержат в тканевой жидкости вещества (гликопротеиды), препятствующие образованию кристаллов льда в организме; у насекомых накапливается для этих целей глицерин. Другие животные, наоборот, увеличивают теплопродукцию организма за счет активного сокращения мускулатуры так они повышают температуру тела на несколько градусов. Третьи регулируют свой теплообмен за счет обмена тепла между сосудами кровеносной системы: сосуды, выходящие из мышц, тесно соприкасаются с сосудами, идущими от кожи и несущими охлажденную кровь (такое явление свойственно холодноводным рыбам). Адаптивное поведение проявляется в том, что многие насекомые, рептилии и амфибии выбирают места на солнце для обогрева или меняют различные позы для увеличения поверхности обогрева.

У ряда холоднокровных животных температура тела может меняться в зависимости от физиологического состояния: к примеру, у летающих насекомых внутренняя температура тела может подниматься на 1012 С и более вследствие усиленной работы мышц. У общественных насекомых, особенно у пчел, развился эффективный способ поддержания температуры путем коллективной терморегуляции (в улье может поддерживаться температура 3435 С, необходимая для развития личинок).

Пойкилотермные животные способны приспосабливаться и к высоким температурам. Это происходит также разными способами: теплоотдача может происходить за счет испарения влаги с поверхности тела или со слизистой верхних дыхательных путей, а также за счет подкожной сосудистой регуляции (например, у ящериц скорость тока крови по сосудам кожи увеличивается при повышении температуры).

Наиболее совершенная терморегуляция наблюдается у птиц и млекопитающих гомойтермных животных. В процессе эволюции они приобрели способность поддерживать постоянную температуру тела благодаря наличию четырехкамерного сердца и одной дуги аорты, что обеспечило полное разделение артериального и венозного кровотока; высокого обмена веществ; перьевого или волосяного покрова; регуляции теплоотдачи; хорошо развитой нервной системы приобрели способность к активной жизни при разной температуре. У большинства птиц температура тела несколько выше 40 oС, а у млекопитающих несколько ниже. Весьма важное значение для животных имеет не только способность к терморегуляции, но и адаптивное поведение, постройка специальных убежищ и гнезд, выбор места с более благоприятной температурой и т.п. Они также способны приспосабливаться к низким температурам несколькими путями: кроме перьевого или волосяного покрова, теплокровные животные с помощью дрожи (микросокращения внешне неподвижных мышц) уменьшают теплопотери; при окислении бурой жировой ткани у млекопитающих образуется дополнительная энергия, поддерживающая обмен веществ.

Приспособление теплокровных к высоким температурам во многом сходно с аналогичными приспособлениями холоднокровных потоотделение и испарение воды со слизистой рта и верхних дыхательных путей, у птиц только последний способ, так как у них нет потовых желез; расширение кровеносных сосудов, расположенных близко к поверхности кожи, что усиливает теплоотдачу (у птиц этот процесс протекает в неоперенных участках тела, например через гребень). Температура, как и световой режим, от которого она зависит, закономерно меняется в течение года и в связи с географической широтой. Поэтому все приспособления более важны для обитания при отрицательных температурах.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!