Это жизнь - портал для женщин

Происхождение эукариот. Симбиотическая теория, эндосимбиоз или симбиогенез Симбиотическая теория

Следует отметить три гипотезы происхождения эукариотических клеток:

  • симбиотическая гипотеза , или симбиогенез ,
  • инвагинационная ,
  • химерная .

На сегодняшний день в научном мире основной гипотезой происхождения эукариот признается симбиогенез .

Согласно симбиогенезу такие органеллы эукариотических клеток как митохондрии , хлоропласты и жгутики произошли путем внедрения одних прокариот в другую, более крупную прокариотическую клетку, сыгравшую роль клетки-хозяина.

В симбиотической гипотезе есть трудности при объяснении происхождения ядра эукариотических клеток и в вопросе, какой же все-таки прокариот выступил хозяином. Данные молекулярного анализа генома и белков эукариот показывают, что, с одной стороны, это был организм близкий к археям (раньше относились к бактериям, потом их выделили в отдельную ветвь). С другой стороны, в эукариотах имеются белки (и ответственные за их синтез гены), характерные для совершенной других групп прокариот.

Согласно инвагинационной гипотезе происхождения эукариотических клеток их органоиды образовались путем впячивания цитоплазматической мембраны с последующим отделением этих структур. Образовывались что-то вроде шариков, окруженных мембраной и содержащих внутри цитоплазму и захваченные сюда соединения и структуры. В зависимости от того, что попало внутрь, сформировались разные органоиды.

У прокариот нет настоящих органелл, их функции как раз и выполняют впячивания мембраны. Поэтому легко представить подобное ее отшнуровывание. Также в пользу инвагинационной гипотезы говорит схожесть цитоплазматической мембраны и двойных мембран органелл.

С точки зрения инвагинагенеза происхождение ядра легко объяснимо, но необъяснимо, почему геном и рибосомы ядерно-цитоплазматического комплекса отличаются от таковых в хлоропластах и митохондриях (вспомним, что в них также есть ДНК и рибосомы). Причем в указанных органеллах система биосинтеза белка (ДНК, РНК, рибосомы) схожа с прокариотами.

Это отличие хорошо объяснимо как раз с точки зрения первой, симбиотической, гипотезы. Согласно ей в анаэробный прокариот так или иначе попал аэробный прокариот. Он не переварился, а стал, наоборот, питаться за счет клетки-хозяина. В свою очередь он использовал кислород для получения энергии, а этот способ окисления намного эффективнее, избыток энергии он отдавал хозяину-прокариоту, который в таком случае также получал выгоду. Возник симбиоз. В последствии внедрившийся прокариот упростился, часть его генома мигрировала в клетку-хозяина, он уже не мог существовать независимо.

Подобным образом симбиогенез объясняет происхождение хлоропластов. Только внедрялись уже прокариоты, способные к фотосинтезу (подобные синезеленым водорослям).

Первые эукариоты без фотосинтезирующих симбионтов дали начало животным, у которых они появились - растениям.

В настоящее время существуют простейшие (одноклеточные эукариотические организмы) у которых нет митохондрий или хлоропластов. Зато вместо них в цитоплазме поселяются прокариоты-симбионты, выполняющие соответствующие функции. Этот факт, а также схожесть системы биосинтеза белка митохондрий и пластид с прокариотами рассматриваются как доказательства симбиогенеза. Доказательством также служит то, что митохондрии и хлоропласты размножаются самостоятельно, они никогда не строятся клеткой с нуля.

В пользу третьей, химерной, гипотезы происхождения эукариотических клеток, говорит большой размер их генома, который превосходит бактериальный в тысячи и более раз, а также разнообразие синтезируемых белков, встречающихся в разных группах прокариот. Понятно, что на протяжении эволюции эукариот их геном усложнялся, он удвоился, в нем появилось множество регулирующих генов. Но все же первоначальное увеличение размера генома могло произойти за счет объединения геномов нескольких прокариот.

Возможно в древности некий прокариот приобрел способность к фагоцитозу и, питаясь таким образом, поглощал в том числе других прокариот, которые не всегда переваривались. Их геном содержал полезные для хозяина гены, и он включал их в свой геном. Возможно некоторые из оказавшихся внутри прокариот становились органеллами, что объединяет химерную гипотезу с симбиогенезом.

Поскольку все перечисленные гипотезы имеют сильные и слабые стороны, а также во многом не исключают положения друг друга, то, на наш взгляд, в происхождении структур эукариотических клеток могло сыграть роль сочетание множества факторов, описываемых разными гипотезами.

Следует также отметить, что согласно симбиотической гипотезе происхождение других мембранных органелл таких как вакуоли, комплекс Гольджи и др. можно рассматривать как дальнейшее упрощение, например, митохондрий.

Также отметим, что сочетание в эукариотах белков из разных прокариот вовсе может не указывать на химеризм первых. Возможно, что определенные ферментативные функции могут выполнять только белки конкретного строения. И эволюция эукариот повторно приходила к этому, независимо от эволюции не являющихся их предками групп прокариот. Скажем, происходила конвергенция на молекулярном уровне.

Митохондрии - верные спутники эукариот. Согласно теории симбиогенеза, именно обретение митохондрий спровоцировало формирование ядерных организмов. Одним из доказательств этой теории было обнаружение митохондрий или подобных им органелл у всех, даже самых простых, эукариот. Но в мае 2016 года коллектив чешских ученых описал первый в истории ядерный организм, не содержащий даже косвенных признаков митохондрий. Может ли это открытие пошатнуть современные представления о ранней эволюции эукариот?

Митохондрии - двумембранные органеллы, снабжающие энергией клетки практически всех эукариот. Достоверно известно, что они родственны α-протеобактериям и стали частью эукариотических клеток около 1,5 млрд лет назад . О бактериальном происхождение митохондрий свидетельствует наличие двух мембран (внутренней собственной и внешней хозяйской), собственных кольцевой ДНК и трансляционной машины, а также способности независимо делиться. Некоторые даже полагают, что апоптоз - попытка митохондрии убить поглотившего ее эксплуататора.

Тем не менее в научном сообществе до сих пор нет единого мнения относительно роли этого симбиоза в развитии эукариот (рис. 1). Сторонники теории симбиогенеза утверждают, что слияние некой археи с предком митохондрий (бактерией) запустило цепочку событий, приведших к образованию эукариот современного типа. Приверженцы архезойной теории (гипотезы) , наоборот, считают, что «приручить» митохондрию мог только уже оформившийся ядерный организм - архезой .

Благодаря Карлу Вёзе и Джорджу Фоксу, в 70-х годах прошлого века сравнившим гены 16S рРНК множества живых существ, долго обманывавшие микробиологов своим визуальным сходством две формы доядерных организмов (прокариот) развели окончательно и бесповоротно, да еще и на высшем уровне: эубактерий лишили права на «истинность» (-эу), архебактерий - права носить гордое имя бактерий, зато в новой системе живых организмов им отвели по собственному домену (таксону высшего ранга): «Эволюция между молотом и наковальней, или как микробиология спасла эволюцию от поглощения молекулярной биологией » и «Карл Вёзе (1928–2012) » . Так в 1990 году человеку предложили осознать, что все живые существа филогенетически разбиваются на три домена: Бактерии, Археи и Эукариоты, - причем бактерии отличаются от архей даже больше, чем археи от эукариот, а недавно вообще чуть ли не усомнились в целесообразности разделения последних: «Нашли предков всех эукариот » . Однако предложение почти тридцатилетней давности до сих пор не нашло понимания у многих авторов отечественных учебников биологии. А что? Вдруг опять эти ученые всё поменяют, а им переписывать каждые -цать лет учебники что-ли? - Ред.

В 1928 году знаменитый биолог рубежа XIX-XX веков Эдмунд Вилсон высказался о гипотезе бактериального происхождения митохондрий так: «Подобные идеи чересчур фантастичны, чтобы их можно было обсуждать в приличном биологическом обществе» . Сегодня же подобное отношение сформировалось к архезойной теории, а ключевая роль митохондрий в ранней эволюции эукариот общепризнанна. Открытие первого истинно безмитохондриального простейшего заставляет еще раз задуматься о сильных и слабых сторонах каждой из теорий.

Теория симбиогенеза

Одно из преимуществ симбиогенетической теории по сравнению с архезойной в том, что она объясняет возникновение ядра и интронную структуру генома. У прокариот широко распространен горизонтальный перенос генов (ГПГ), за счет которого популяции могут быстро обмениваться частями генофонда . ГПГ способствует незащищенности генома - ведь поступающая ДНК в этом случае ничем не отделена от содержимого хозяйской клетки.

Вполне вероятные попытки клетки-хозяина разрушить пока еще не одомашненного симбионта приводили к высвобождению в цитоплазму симбиотической ДНК. Эта ДНК, будучи в непосредственной близости от хозяйского генома, могла легко в него встраиваться . Из-за ГПГ даже в эукариотах, утративших митохондрии, находят изначально митохондриальные гены.

Такое слияние геномов могло, во-первых, способствовать развитию взаимозависимости симбионта и хозяина. Во-вторых, обильный ГПГ мог переносить не только гены, обеспечившие переплетение метаболизма двух организмов, но и эгоистичные ретроэлементы . Вторжение интронов II группы, вырвавшихся из α-протеобактерий, привело к разрыхлению исходно очень плотного генома хозяина: до 80% хозяйской ДНК теперь были интронами , . В такой сложной ситуации клетка-хозяин развила несколько линий защиты своего генома от шквала интронов: возникли система внутренних мембран и ядро, убиквитиновая система деградации поврежденных белков, нонсенс-опосредованный распад РНК и прочие характерные особенности эукариот (рис. 3).

Рисунок 3. Формирование основных черт эукариот можно объяснить последовавшим за митохондриальным симбиозом вторжением интронов II группы в геном клетки-хозяина.

Еще одно мощное доказательство симбиогенеза - энергетические потребности эукариот. Хотя энергопотребление про- и эукариот в пересчете на грамм веса примерно одинаково, ядерные клетки гораздо крупнее безъядерных, из-за чего они потребляют примерно в 5000 раз больше энергии (2300 пВт/кл против 0,5 пВт/кл). При пересчете энергопотребления на средний ген одноклеточного организма оказывается, что эукариотический ген потребляет в 1000 раз больше энергии . Без митохондриальной энергетики было бы невозможно не только создать сложные, большие и активно передвигающиеся организмы, но даже обеспечить функционирование типичных для эукариот клеточных структур.

У гигантских бактерий масштабирование прокариотической энергетики за счет массовой полиплоидизации (как в случае Epulopiscium , дорастающей до 0,6 мм и содержащей 200 000 копий генома размером 3,8 млн п.н.) не приводит к повышению выхода энергии на ген, и клетка остается типично бактериальной . - Авт.

Еще один важный факт, подкрепляющий симбиогенетический сценарий - существование внутриклеточных симбионтов бактерий. Случаи эндосимбиоза у бактерий крайне редки в природе, но всё же они есть и демонстрируют, как мог зарождаться эукариотический домен жизни .

Архезойная теория

Архезои - предполагаемые безмитохондриальные, но ядерные предки современных эукариот. Согласно архезойному сценарию митохондрии были одомашнены только на поздних стадиях эволюции эукариот и не оказали на этот процесс значительного влияния.

Одно из основных положений симбиогенеза - гипотеза исходной простоты. О жизни во времена протерозоя известно крайне мало, поэтому о ее устройстве существует множество часто взаимоисключающих предположений. Если по первой гипотезе считается, что от прокариот с очень компактными геномами произошли более сложные эукариоты, то в архезойном сценарии изначально существовали клетки с запутанными и громоздкими геномами, от которых путем редукции произошли более простые прокариоты. Эукариоты же лишь сохранили первичную сложность.

Эволюция геномов и правда далеко не всегда движется от простого к сложному. И среди эукариот есть примеры, подтверждающие это.

Тем не менее редукция генома совсем не обязательно сопровождает его компактизацию. Доказательства этого можно найти как у простейших, так и у многоклеточных форм жизни.

Например, свободноживущая инфузория Paramecium tetraurelia содержит 30000 генов, на каждый из которых приходится в среднем 2 т.п.н. Такая компактность достигается за счет сокращения размера интронов до предельных 25 п.н. и уменьшения межгенных расстояний .

Даже у позвоночных могут быть необычно компактные геномы: геном рыбы фугу в восемь раз меньше человеческого в основном за счет низкого содержания повторов (рис. 4) .

Рисунок 4. Рыба фугу имеет необычно компактный для позвоночного геном частично благодаря коротким интронам. Вертикальная ось дана в логарифмическом масштабе.

Рисунок 5. Гипотеза изначальной сложности подразумевает, что прокариотические ветви жизни произошли от более сложных форм за счет редукции. Редукционный вектор развития мог быть задан первыми хищными архезоями, угнетающими прочие организмы.

Приведенные примеры показывают, что простота прокариотических геномов может возникать вторично. Если это так, то LUCA - последний общий предок всех современных организмов - мог обладать геномом эукариотического типа.

Гипотезу исходной сложности также подтверждают так называемые гены-сигнатуры («подписи») - эукариотические гены, не имеющие прокариотических гомологов. Вероятнее всего, эти гены содержались в LUCA, но были утеряны бактериями и археями.

К несчастью архезойной теории, список сигнатур значительно поредел с начала XXI века. Среди множества секвенированных с тех пор геномов были найдены их прокариотические гомологи. Таким образом, с каждым годом становится всё больше белков, чье присутствие у эукариот можно объяснить тем, что их гены были принесены архейным либо бактериальным предком в ходе симбиогенеза.

И в то же время открытие прокариотических гомологов белков клеточного движения (актинов, тубулинов и кинезинов) косвенно подтверждает возможность того, что архезои могли активно передвигаться и даже быть первыми хищниками на Земле, способными к фагоцитозу . Возникновение хищников в автотрофно-сапротрофном сообществе колыбели жизни должно было оказать колоссальное влияние на ход эволюции. В самых захватывающих сценариях одни жертвы архезоя приспосабливаются к быстрому делению и росту, а другие - к нишам, куда архезой не способен проникнуть. В итоге гипотетический архезой повел эволюцию своих современников по редуктивному пути с упором на гибкость метаболизма и скорость деления, в ходе чего сформировались известные нам прокариоты (рис. 5) .

Но несмотря на то, что архезойная теория имеет некоторые сильные стороны или как минимум наносит колкие удары в сторону симбиогенеза, ей не хватает главного - она не объясняет, как и почему сформировалось ядро .

Уникальная находка

В 1980-х существовало множество претендентов на звание современного архезоя, но в последующие годы у всех них нашли митохондриеподобные органеллы (митосомы и пероксисомы) и гены-маркеры митохондриального прошлого: гены сборки Fe-S -белков, митохондриальных транспортеров и шаперонов, синтетазы кардиолипина. К тому же некоторые белки, синтезируемые в цитоплазме, обладают последовательностями импорта в митохондрии, которые могут сохраняться и в отсутствие самих митохондрий.

С каждым новым «закрытием» потенциального архезоя безмитохондриальный сценарий становления эукариот оказывался всё менее вероятным. И вот в мае 2016 года наконец-то появился новый потенциальный архезой, не содержащий даже следов митохондрий.

Речь идет об анаэробной оксимонаде Monocercomonoides sp. PA203, живущей в кишечнике насекомых. Оксимонады лишены митохондрий и не содержат в ядерной ДНК гены митохондриального происхождения. Энергию они получают из гликолиза , идущего в цитоплазме.

Геном Monocercomonoides sp., расшифрованный коллективом чешских ученых, содержит 16629 генов, среди которых нет названных выше маркеров. Поиски митохондриальных гомологов и белков с импортными последовательностями тоже не дали удовлетворительных результатов (рис. 6).

Единственное, что удалось найти - два гена, продукты которых у близкого родственника Monocercomonoides sp. могут содержаться (а могут и не содержаться) в митохондриях, при этом они лишены импортных последовательностей.

Авторы открытия считают, что Monocercomonoides когда-то всё же содержали митохондрии, поскольку у близкородственных родов есть следы митохондрий. Еще остается возможность, что у этих простейших есть пока не обнаруженные митосомы, деградировавшие настолько, что в геноме не осталось каких-либо признаков их присутствия.

Так или иначе, Monocercomonoides sp. - пока уникальный случай истинно безмитохондриального протиста за всю историю биологии. И этот случай доказывает, что эукариоты могут жить не только без митохондрий, но и без их генетического наследства .

В какой последовательности предки эукариот разживались внутриклеточным скарбом и что стало счастливым билетом в эволюционное будущее, можно узнать из статьи «Генеалогия белков свидетельствует о позднем приобретении митохондрий предками эукариот » . - Ред.

Это открытие, конечно, не наносит сокрушительного удара по теории симбиогенеза, но однозначно заставляет задуматься, что есть необходимость и что есть излишество в эукариотах.

Литература

  1. Как появились митохондрии (рассказ, похожий на сказку) ;
  2. Кунин Е.В. Логика случая . М.: Центрполиграф, 2014. - 527 с.;
  3. Эволюция между молотом и наковальней, или Как микробиология спасла эволюцию от поглощения молекулярной биологией ;
  4. Карл Вёзе (1928–2012) ;
  5. Кондратенко Ю. (2015). «Нашли предков всех эукариот ». «Кот Шрёдингера» . 6 ;
  6. van der Giezen M. (2009).

Пятьдесят лет назад, в 1967 году, Линн Маргулис (Lynn Margulis) опубликовала развернутое изложение симбиогенетической теории, согласно которой эукариоты (организмы с клеточными ядрами) возникли в результате серии объединений разных клеток между собой. Современная поправка к этой теории гласит, что в основе становления эукариот, по-видимому, была не общая тенденция, охватившая многие эволюционные ветви (как предполагала Маргулис), а уникальное событие, приведшее к слиянию клеток археи и протеобактерии. В результате образовалась сложная клетка с митохондриями, которая и стала первым эукариотом. Дальнейшие симбиогенетические события - например, захват водорослей, ставших хлоропластами, - действительно происходили много раз, но с возникновением эукариот как таковых они не связаны.

Пятьдесят с лишним лет назад, в марте 1967 года, в международном «Журнале теоретической биологии» (Journal of Theoretical Biology) вышла статья «О происхождении клеток, делящихся митозом» (L. Sagan, 1967. On the origin of mitosing cells). Автора статьи звали Линн Саган (Lynn Sagan), но в дальнейшем эта замечательная женщина стала гораздо более известна как Линн Маргулис (Lynn Margulis). Фамилию Саган она носила, потому что была некоторое время замужем за Карлом Саганом (Carl Edward Sagan), астрономом и писателем.

Выход в 1967 году статьи Линн Маргулис (будем для удобства звать ее так) стал началом обновления биологических представлений, которое многие авторы расценили как смену парадигм - то есть, иными словами, как самую настоящую научную революцию (И. М. Мирабдуллаев, 1991. Эндосимбиотическая теория - от фантастики к парадигме). Суть интриги тут проста. Со времен Чарльза Дарвина биологи были убеждены, что основным способом эволюции является дивергенция - расхождение ветвей. Линн Маргулис была первой, кто сумел по-настоящему убедительно объяснить научному сообществу, что механизм некоторых крупных эволюционных событий, скорее всего, был принципиально другим. В центре интересов Маргулис оказалась проблема происхождения эукариот - организмов, клетка которых обладает сложной внутренней структурой с ядром . К эукариотам относятся животные, растения, грибы и многие одноклеточные - амебы, жгутиконосцы , инфузории и прочие. Маргулис показала, что ранняя эволюция эукариот вовсе не сводилась к дивергенции - она включала в себя слияние эволюционных ветвей, причем неоднократное. Дело в том, что по меньшей мере два типа эукариотных органелл - митохондрии , благодаря которым мы можем дышать кислородом, и хлоропласты , осуществляющие фотосинтез, - происходят не от того предка, что основная часть эукариотной клетки (рис. 1). И митохондрии, и хлоропласты - это бывшие бактерии, изначально совсем не родственные эукариотам (протеобактерии в случае митохондрий и цианобактерии - в случае хлоропластов). Эти бактерии были поглощены клеткой древнего эукариота (либо предка эукариот) и продолжили жить внутри нее, сохраняя до поры собственный генетический аппарат.

Таким образом, эукариотная клетка - это, по выражению Маргулис, мультигеномная система . И возникла она в результате симбиоза , то есть взаимовыгодного сожительства разных организмов (точнее, эндосимбиоза , один из участников которого живет внутри другого). Соответствующие эволюционные ветви при этом, разумеется, слились. Такой взгляд на эволюцию получил название теории симбиогенеза .

Сейчас теория симбиогенеза общепринята. Она подтверждена настолько строго, насколько вообще можно подтвердить какую бы то ни было теорию, касающуюся крупномасштабной эволюции. Но научные концепции, в отличие от религиозных догматов, никогда не остаются статичными. Естественно, что общая картина симбиогенеза выглядит для нас сейчас не совсем так (а местами и совсем не так), как представляла ее себе Линн Маргулис полвека назад.

Логика классика

К пятидесятилетию выхода знаменитой статьи о симбиогенезе Journal of Theoretical Biology подготовил специальный выпуск , целиком посвященный творческому наследию Линн Маргулис. В этот выпуск входит обстоятельная статья известного британского биохимика и популяризатора науки Ника Лейна (Nick Lane), в которой современное состояние проблемы происхождения эукариот сравнивается с классическими идеями на эту тему. Лейн нисколько не сомневается, что в основных утверждениях (касающихся происхождения митохондрий и хлоропластов) Маргулис была права; в наше время в этом не сомневается, кажется, никто из серьезных ученых, ибо данные молекулярной биологии на этот счет однозначны. Но дьявол, как известно, живет в деталях. В данном случае мы можем, погрузившись в детали, найти там много нового и интересного, а главное - убедиться, что тема происхождения эукариот далеко не исчерпана.

Начнем с того, что кое-какие частные предположения Маргулис оказались неверны. Это нормально: учитывая огромную скорость развития биологии, просто невероятно, чтобы в статье, опубликованной полвека назад, было точно угадано абсолютно всё. Новые факты, которые не могли быть в свое время известны автору, обязательно внесут какие-нибудь коррективы. Так получилось и тут. Прежде всего, Маргулис настаивала на симбиотическом происхождении не только митохондрий и хлоропластов, но и эукариотных жгутиков . Она считала, что предками жгутиков были закрепившиеся на эукариотной клетке длинные спирально закрученные подвижные бактерии, похожие на современных спирохет (см. рис. 1). Увы, эта гипотеза не получила никаких молекулярно-биологических подтверждений, и сейчас ее больше никто не поддерживает.

В некоторых моментах Маргулис могла бы оказаться права (это не запрещено ни законами природы, ни внутренней логикой ее собственной теории), но тем не менее по не зависящим от нее причинам промахнулась. Например, она считала, что раз уж митохондрии - потомки бактерий, то рано или поздно биологи научатся культивировать их в питательной среде вне эукариотных клеток - ну, как обычных микробов. Если бы такое оказалось возможным, это было бы идеальным доказательством теории симбиогенеза. Увы, на самом деле современные митохондрии принципиально неспособны к самостоятельному выживанию, потому что большая часть их генов в ходе эволюции мигрировала в клеточное ядро и встроилась там в геном эукариотного «хозяина». Теперь белковые продукты этих генов синтезируются за пределами митохондрии, а потом переправляются в нее с помощью особых транспортных систем, принадлежащих эукариотной клетке. Гены, оставшиеся в самой митохондрии, всегда малочисленны - для жизнеобеспечения их не хватит. В 1967 году этого просто еще никто не знал.

Однако по большому счету всё это частности. Мышление Линн Маргулис было синтетическим: она не ограничивалась объяснениями отдельных фактов, а стремилась свести их в целостную систему, описывающую эволюцию живых организмов в контексте истории Земли (рис. 2). Современные научные знания позволяют проверить эту систему представлений на прочность.

Древо и сеть

Всё началось с кислорода. В древнейшей атмосфере Земли молекулярного кислорода (O 2) не было. Потом цианобактерии, первыми освоившие кислородный фотосинтез, стали выделять этот газ в атмосферу (для них он был просто ненужным побочным продуктом). Между тем чистый кислород - это весьма ядовитое вещество для всех, у кого нет специальных биохимических средств защиты от него. Неудивительно, что выбросы кислорода цианобактериями отравили атмосферу Земли и привели к массовому вымиранию. Начался «кислородный холокост» (L. Margulis, D. Sagan, 1997. Microcosmos: four billion years of microbial evolution).

Тут уже необходима поправка. Многие современные исследователи считают, что переход от бескислородной биосферы к кислородной на самом деле был гораздо более постепенным и менее разрушительным, чем предполагают рассуждения о «кислородном холокосте» (см., например: «Великое кислородное событие» на рубеже архея и протерозоя не было ни великим, ни событием , «Элементы», 02.03.2014). Более того, не исключается, что появление свободного кислорода скорее даже повысило разнообразие микроорганизмов, потому что окисление атмосферным кислородом ряда минералов обогатило химический состав среды и создало новые экологические ниши (M. Mentel, W. Martin, 2008. Energy metabolism among eukaryotic anaerobes in light of Proterozoic ocean chemistry). В общем, представление о появлении кислорода в атмосфере как о разовой грандиозной катастрофе, поделившей всю историю Земли на «до» и «после», теперь, похоже, устарело.

Так или иначе, несомненно, что больше всех от обогащения нашей планеты кислородом выиграли альфа-протеобактерии . Они научились непосредственно использовать кислород для получения энергии - причем с огромной эффективностью. А вот у одноклеточных предков эукариот такой способности не было. Они были анаэробными , то есть дышать кислородом не умели. Зато они были хищниками, научившимися поглощать более мелкие клетки путем фагоцитоза . И это дало им превосходную возможность: захватывать некоторых бактерий, не переваривая их, а «порабощая» и присваивая продукты их обмена веществ. Поглотив альфа-протеобактерию, примитивный эукариот получил возможность дышать кислородом - так образовались митохондрии. А поглотив цианобактерию, он получил возможность фотосинтезировать - так образовались хлоропласты. Маргулис считала, что такие события происходили много раз, подчиняясь возникшей общей тенденции. Это - так называемый сценарий сериального эндосимбиоза .

Итак, у Маргулис получается, что на определенном этапе развития жизни эндосимбиоз стал едва ли не всеобщей закономерностью. Тогда в основании эволюционного древа эукариот должна находиться буквально целая сеть эволюционных ветвей, пересекающихся друг с другом за счет эндосимбиотических событий и «растущих» примерно в одном направлении - в том, которое диктовалось сочетанием тогдашних внешних условий со структурными особенностями клеток (рис. 3, А).

Надо сказать, что к концу XX века в эволюционной биологии (и особенно в палеонтологии) и без того завоевала определенную популярность идея, что большинство крупных эволюционных событий имеет закономерный и системный характер. Подобное событие охватывает сразу много эволюционных ветвей, в которых под действием общей наследственности параллельно возникают примерно одни и те же признаки (см., например: А. Г. Пономаренко, 2004. Артроподизация и ее экологические последствия). Примерами таких событий называли маммализацию (происхождение млекопитающих), ангиоспермизацию (происхождение цветковых растений), артроподизацию (происхождение членистоногих), тетраподизацию (происхождение наземных позвоночных), орнитизацию (происхождение птиц) и многое другое. Казалось, что становление эукариот - эукариотизация - великолепно вписывается в этот ряд.

Например, Кирилл Еськов в своей замечательной книге «История Земли и жизни на ней» (написанной в 1990-е годы) говорит следующее: «Скорее всего, различные варианты эукариотности, то есть внутриклеточных колоний, возникали многократно (например, есть основания полагать, что красные водоросли, резко отличающиеся от всех прочих растений по множеству ключевых признаков, являются результатом такой “независимой эукариотизации” цианобактерий)» (К. Ю. Еськов, 2000. История Земли и жизни на ней).

Увы, применительно к эукариотам (прочие примеры «-заций» мы сейчас не обсуждаем) современные данные ставят этот красивый сценарий под сомнение.

Проблема митохондрий

Начнем с того, что обсуждавшаяся Еськовым гипотеза насчет красных водорослей теперь устарела. Молекулярные исследования показывают, что эволюционная линия красных водорослей находится глубоко внутри древа эукариот (они достаточно близкие родственники зеленых растений), и их независимая эукариотизация крайне маловероятна.

Но гораздо серьезнее другое. Если симбиогенез был закономерным, долгим, многоступенчатым процессом, да еще и шел параллельно в разных эволюционных ветвях, то следовало бы ожидать, что мы увидим спектр довольно разнообразных переходных состояний между эукариотами и не-эукариотами. Маргулис именно так и думала. То, что эти переходные состояния не бросаются в глаза, она (насколько можно судить) считала проблемой чисто технической, связанной с недостатком знаний и несовершенством методов. Подтверждается ли это сейчас, когда мы знаем о живых клетках неизмеримо больше, чем знали пятьдесят лет назад?

Порассуждаем. Предполагаемый сериальный эндосимбиоз должен был идти, во-первых, постепенно, и во-вторых - немного по-разному в разных эволюционных линиях (поскольку точных повторений в эволюции не бывает). Исходя из этого, Маргулис предсказывала, что рано или поздно будут обнаружены эукариоты, имеющие хлоропласты, но никогда не имевшие митохондрий; эукариоты, сохранившие бактериальные жгутики (которые резко отличаются по структуре от жгутиков эукариот); и наконец, первично анаэробные эукариоты, в клетках которых нет никаких следов приспособления к кислородной атмосфере. Ни одно из этих предсказаний не подтвердилось. Ни у кого из эукариот нет и намека на жгутики бактериального типа - средства движения у них совсем другие. Никого из известных эукариот нельзя назвать первичным анаэробом - все они, без исключения, прошли когда-то в своей эволюции «кислородную фазу». Наконец, у всех эукариот есть или действующие митохондрии, или их остатки, потерявшие значительную часть функций (гидрогеносомы , митосомы), или - на худой конец - митохондриальные гены, успевшие перейти в ядро.

В конце XX века была популярна гипотеза, что у некоторых современных одноклеточных эукариот митохондрий нет и не было никогда. Таких первично безмитохондриальных эукариот предлагали выделить в особое царство Archezoa . Маргулис довольно рано приняла эту гипотезу и была верна ей до последнего - даже тогда, когда ее уже отвергли многие другие ученые (L. Margulis et al., 2005. “Imperfections and oddities” in the origin of the nucleus). Она считала вполне вероятным, что первично безмитохондриальные эукариоты («архепротисты») до сих пор живут в каких-нибудь труднодоступных бескислородных местообитаниях, где их очень сложно обнаружить. Увы, никаких «архепротистов» до сих пор так и не нашли, а вот остатков митохондрий у тех одноклеточных, которых раньше относили к Archezoa, найдено сколько угодно. На данный момент известен только один эукариот, не имеющий вообще никаких следов митохондрий, - жгутиконосец Monocercomonoides , но положение этого существа на эволюционном древе не оставляет сомнений в том, что и у него митохондрии когда-то были (A. Karnkowska et al., 2016. A eukaryote without a mitochondrial organelle). В общем, на данный момент все без исключения случаи отсутствия митохондрий у эукариот приходится признать вторичными. А это означает, что никакого древнейшего безмитохондриального этапа в истории эукариот - по крайней мере, их современных групп - не было.

Маргулис считала (для своего времени достаточно обоснованно), что на определенном отрезке истории жизни эукариотизация была широкой тенденцией - «трендом», как сейчас принято говорить. Исходя из этого, вполне можно было бы допустить, что разные эукариоты имеют разных предков: например, что эукариотные водоросли произошли от цианобактерий, животные - от хищных бактерий, а грибы - от бактерий-осмотрофов , всасывающих питательные вещества сквозь поверхность клетки. Никаким фундаментальным законам биологии такая гипотеза не противоречит. Но вот фактам она, к сожалению, противоречит разительно. Молекулярная систематика показывает, что общий предок растений, животных и грибов был не переходной формой, а истинным эукариотом, «полностью оперившимся», как выражается Ник Лейн. Можно смело утверждать, что общий предок всех современных эукариот уже был полноценной эукариотной клеткой: у него было ядро, эндоплазматическая сеть , аппарат Гольджи , микротрубочки , микрофиламенты , митохондрии и жгутики. В общем, полный набор эукариотных признаков.

Обратим внимание, что в этот набор признаков не входят хлоропласты. Они появились далеко не у всех эукариот и не сразу. Кроме того, хлоропласты уж точно приобретались неоднократно, причем разными способами в разных эволюционных ветвях. Хлоропласты бывают как первичные (когда эукариот захватывает цианобактерию), так и вторичные (когда эукариот захватывает другого эукариота с цианобактерией внутри) и даже третичные (когда один эукариот захватывает второго эукариота, внутри которого живет третий эукариот, а уж внутри того - цианобактерия). Здесь эволюция, что называется, разгулялась. С митохондриями ситуация совершенно иная: по признаку их наличия мы не видим никакого особого разнообразия и никаких переходных стадий (если не считать многочисленных фактов вторичной потери, но о происхождении эукариот такие факты не говорят ровно ничего). Если бы сценарий Маргулис был полностью верен, то и с митохондриями, и со жгутиками дело обстояло бы примерно так же, как с хлоропластами, - но этого нет.

В чем Маргулис была права, так это в том, что эукариоты в целом весьма предрасположены к захвату эндосимбионтов. Тут можно привести самые разные примеры, вплоть до приобретения некоторыми глубоководными червями симбионтов-бактерий, за счет которых эти черви, собственно, и живут (В. В. Малахов, 1997. Вестиментиферы - автотрофные животные). Бурная эволюция хлоропластов - самое яркое проявление этой тенденции. Только вот «действующие лица», которые их приобрели, по-видимому, уже имели к тому времени полный набор эукариотных признаков, включая митохондрии. Конфигурация эволюционного древа эукариот, насколько мы ее сейчас знаем, просто не допускает других версий.

К этому Лейн добавляет, что базовая структура клеток на удивление мало отличается у разных эукариот в зависимости от их образа жизни (хотя сам образ жизни может отличаться очень сильно). Все характерные компоненты клетки, делающие ее эукариотной, устроены в целом одинаково и у растений, и у животных, и у грибов, и у жгутиконосцев, и у амеб... «Мы теперь знаем, что почти все различия между эукариотами отражают вторичные адаптации», - пишет Лейн в обсуждаемой статье. Единообразие устройства эукариотной клетки означает, что первые этапы ее становления не оставили в современном разнообразии эукариот практически никаких следов.

Уникальное событие

Выводы, которые делает Лейн, на сегодняшний день уже нельзя назвать новыми или неожиданными. Современные данные наиболее совместимы с предположением, что становление эукариотной клетки было единичным событием , завершившимся (в доступном нам масштабе времени) очень быстро. Вероятно, предки эукариот прошли на этом этапе через своего рода «бутылочное горлышко» (в одной более ранней статье Лейн предполагал, что это была маленькая неустойчивая короткоживущая популяция, в которой и свершились все основные перемены; N. Lane, 2011. Energetics and genetics across the prokaryote-eukaryote divide). В результате возник «полностью оперившийся» первый эукариот, потомки которого разошлись по разным экологическим нишам - но фундаментальное устройство клетки у них уже не менялось. Никакой параллельной эукариотизации, таким образом, не было. Во всяком случае, современная биология не находит подтверждающих ее свидетельств.

Данные сравнительной геномики позволяют предположить, что пороговым событием, выделившим эукариот из всей остальной живой природы, было объединение двух клеток - архейной (вероятно, принадлежавшей кому-то из локиархеот) и бактериальной (вероятно, принадлежавшей кому-то из протеобактерий). Образовавшийся суперорганизм и стал первым эукариотом (рис. 3, Б). Современная «мэйнстримная» точка зрения отождествляет это событие с приобретением митохондрий (так называемый «раннемитохондриальный» сценарий; см., например: N. Yutin et al., 2009. The origins of phagocytosis and eukaryogenesis). Действительно, митохондрии - бесспорные потомки протеобактерий, и они-то уж точно проникли в качестве симбионтов в клетку археи (либо примитивного эукариота, не слишком далеко ушедшего от архей). Правда, на вопрос о том, как именно они туда попали, Лейн дает довольно неожиданный ответ. А именно: «Мы не знаем».

В чем тут дело? Согласно классической теории, все внутренние симбионты были приобретены эукариотными клетками путем фагоцитоза, то есть захвата ложноножками с изоляцией захваченного объекта и последующим его перевариванием (в данном случае - несостоявшимся). В отношении хлоропластов это, по всей видимости, верно, а вот в отношении митохондрий - очень сомнительно. Предположение, что фагоцитоз появился раньше, чем митохондрии, плохо согласуется с данными биоинформатики. Сравнительный анализ белковых последовательностей показывает, что актиновые микрофиламенты, образующие внутренний каркас любых ложноножек, скорее всего, сначала были неподвижными - белки, позволяющие им еще и сокращаться, появились заметно позже (Е. В. Кунин, 2014. Логика случая). А это означает, что начаться прямо с фагоцитоза эволюция эукариот не могла - митохондрии были приобретены каким-то другим способом.

Но надо подчеркнуть, что всё это пока лишь предположения. Загадка происхождения митохондрий, не говоря уж о происхождении ядра, до сих пор не разгадана.

Случайность и необходимость

Итак, верна ли гипотеза сериального эндосимбиоза? Да - в том смысле, что в истории эукариот действительно много раз случались симбиотические события. Лучше всего это иллюстрирует долгая, богатая и неплохо сейчас изученная история хлоропластов (P. Keeling et al., 2013. The number, speed, and impact of plastid endosymbioses in eukaryotic evolution). Нет - в том смысле, что сериальный эндосимбиоз не был предпосылкой возникновения эукариот как группы. Эндосимбиотическое событие, которое привело к возникновению эукариот, было, насколько мы сейчас можем судить, уникальным.

Таким образом, сценарий «параллельной эукариотизации» не подтверждается. Это отнюдь не значит, что эволюционных событий подобного типа вообще не бывает: некоторые из них подробно описаны палеонтологами (например, маммализация зверообразных рептилий, которые приобретают признаки млекопитающих параллельно в нескольких эволюционных ветвях). Более того, список подобных «параллельных сценариев» в последнее время даже пополняется. «Элементы» не раз писали о гипотезе независимого возникновения нервной системы в двух совершенно разных ветвях многоклеточных животных (см. Дискуссия о роли гребневиков в эволюции продолжается , «Элементы», 18.09.2015). Но возникновение эукариот - одно из самых уникальных событий во всей истории жизни на Земле. Вероятно, потому оно и выпадает из этого ряда.

В современной научной литературе есть такое понятие, как гипотеза редкой Земли (см. Rare Earth hypothesis). Сторонники этой гипотезы допускают, что относительно просто устроенная жизнь (бактериального уровня организации) может существовать на множестве планет и быть во Вселенной довольно обычным явлением. А вот относительно сложная жизнь (эукариотная или сопоставимая с ней) возникает только при редчайшем стечении обстоятельств; не исключено, что планета с подобной жизнью - всего одна в Галактике. Если гипотеза редкой Земли верна, то именно возникновение эукариот, скорее всего, является рубежным событием, отделяющим «простую» жизнь (широко распространенную) от «сложной» (маловероятной).

К похожим выводам недавно (и совершенно независимо) пришел автор известной книги «Происхождение жизни» Михаил Никитин. «Пока мы не знаем даже, насколько закономерно было появление эукариот. Если для других этапов развития жизни, таких как переход от мира РНК к РНК-белковому миру, обособление прокариотных клеток из доклеточного “мира вирусов” или появление фотосинтеза, мы с уверенностью можем сказать, что они закономерны и практически неизбежны, коль скоро жизнь уже появилась, то появление эукариот в прокариотной биосфере могло быть очень маловероятно. Возможно, что в нашей Галактике есть миллиарды планет с жизнью бактериального уровня, но только на Земле появились эукариоты, на основе которых появились многоклеточные животные и затем разумные существа» (М. Никитин, 2014. Выдвинута новая гипотеза происхождения эукариотической клетки). Может быть, нам потому так и сложно разобраться в деталях происхождения эукариот: это уникальное (в масштабах планеты) событие, к которому очень трудно приложить принцип униформизма , требующий «по умолчанию» исходить из единообразия факторов и процессов во все моменты времени. Но как раз поэтому загадка происхождения эукариот - одна из самых увлекательных во всей биологии. Нерешенных вопросов в этой области еще множество, здесь (как и в обсуждаемой статье Ника Лейна) упомянуты далеко не все из них.

Министерство здравоохранения Украины

Запорожский государственный медицинский университет

Кафедра микробиологии, вирусологии и иммунологии

Реферат на тему:

«Теории происхождения риккетсий и митохондрий»

подготовила студентка

3 курса 30 группы

Михеева Евгения Сергеевна

Запорожье

1. Теория симбиогенеза

2. Риккетсии

3. Обнаружен ближайший родственник митохондрий

4. Ник Лейн

5. Отрывки из научно-популярной книги Ника Лейна « Энергия, секс, самоубийство. Митохондрии и смысл жизни»

6. Особенности обмена веществ

Список литературы

Теория симбиогене́за

(симбиотическая теория, эндосимбиотическая теория, теория эндосимбиоза ) объясняет механизм возникновения некоторых органоидовэукариотической клетки - митохондрий, гидрогеносом и пластид.

Теорию эндосимбиотического происхождения хлоропластов впервые предложил в 1883 году Андреас Шимпер , показавший их саморепликацию внутри клетки. Её возникновению предшествовал вывод А. С. Фаминцина и О. В. Баранецкого о двойственной природе лишайников симбиотического комплекса грибаи водоросли (1867 год). К. С. Мережковский в 1905 году предложил само название «симбиогенез», впервые детально сформулировал теорию и даже создал на её основе новую систему органического мира. Фаминцин в 1907 году, опираясь на работы Шимпера, также пришёл к выводу, что хлоропласты являются симбионтами, как и водоросли в составе лишайников.

В 1920-е годы теория была развита Б. М. Козо-Полянским, было высказано предположение, что симбионтами являются и митохондрии. Затем долгое время о симбиогенезе практически не упоминали в научной литературе. Второе рождение расширенная и конкретизированная теория получила уже в работах Линн Маргулис начиная с 1960-х годов.

Симбиотическое происхождение митохондрий и пластид

В результате изучения последовательности оснований в митохондриальной ДНК были получены весьма убедительные доводы в пользу того, что митохондрии - это потомки аэробных бактерий (прокариот), родственных риккетсиям, поселившихся некогда в предковой эукариотической клетке и «научившимися» жить в ней в качестве симбионтов. Теперь митохондрии есть почти во всех эукариотических клетках, размножаться вне клетки они уже не способны.

Существуют свидетельства того, что первоначально эндосимбиотические предки митохондрий не могли ни импортировать белки, ни экспортировать АТФ. Вероятно, первоначально они получали от клетки-хозяина пируват, а выгода для хозяина состояла в обезвреживании аэробными симбионтами токсичного для нуклеоцитоплазмы кислорода.

Симбиотическая теория происхождения органелл стала классикой современной биологии. На повестке дня стоят вопросы ее конкретизации, построение филогении, симбиоза, поиск родственных связей, в общем большая и важная работа, без которой невозможно «построить мост» от теории к практике. Многочисленные данные указывают, что таксономический источник происхождения митохондрий - порядок Rickettsiales. Напомним, что риккетсии также как и митохондрии не могут существовать вне клетки-хозяина, но в отличие от последних часто вредят хозяину, например, вызывая сыпной тиф. Нашим соотечественником В.В. Емельяновым из института эпидемиологии и микробиологии им. Н.Ф. Гамалеи и его коллегами еще в 2001 году предложена гипотеза о том, что современные патогенные риккетсии и митохондрии имеют общего предка, подобного сосуществующим с парамециями риккетсиеподобным эндосимбионам (РПЭ). По мнению авторов работы (В.В. Емельянов, М.Ю. Высоких) «последний общий предок не только утратил избыточные гены …, но также передал в хозяйский геном какие-то жизненно важные гены». При помощи иммуноблоттинга белков целых клеток и мембранных фракций Rickettsia prowazekii (возбудителя тифа) было найдено, что одним из кодируемых такими генами белков является белок внешней мембраны митохондрий – порин, который кодируется ядром, импортируется в митохондрии, но также используется, причем функционально и Rickettsia prowazekii. Данное наблюдения является если не доказательством, то весьма серьезным подтверждением гипотезы.

Хотя риккетсии по своим размерам сравнимы с некоторыми вируса­ми, они четко отличаются от них. Клетки риккетсии содержат как ДНК, так и РНК (в отношении 1:3,5); они окружены клеточной стенкой, со­держащей мурамовую кислоту и чувствительной к лизоциму. На электронных микрофотографиях ультратонких срезов можно видеть область ядра и клеточную стенку.

Большинство риккетсий никогда не удавалось выращивать вне жи­вой клетки, но их можно размножать в инкубируемых яйцах и в тканях животных; из желточного мешка куриного яйца можно получить 10 9 клеток. В изолированных клетках риккетсий можно выявить некоторые ферменты промежуточного обмена. В ходе культивирования интенсив­ность метаболизма таких клеток ослабевает, но добавление АТР, орга­нических кислот и аминокислот вновь стимулирует их дыхание. Риккет­сий, таким образом, обладают собственным обменом веществ; однако они, вероятно вследствие изменения проницаемости клеточной поверх­ности, не способны регулировать поглощение и выведение метабо­литов.


Похожая информация.


Теория симбиогенеза (симбиотическая теория, эндосимбиотическая теория, или теория эндосимбиоза) объясняет механизм возникновения некоторых органоидов эукариотической клетки - митохондрий, пластид и гидрогеносом.

Суть концепция заключается в взаимовыгодном сожительстве органеллы с клеткой. Это позволяет предположить об эндосимбиозе, как о выгодном для обоих сторон симбиозе с образованием клеток эукариот (клетки, в которых присутствует ядро). Затем при помощи передачи генетической информации между бактериями осуществлялось их развитие и увеличение популяции. Согласно этой версии, все дальнейшие развитие жизни и жизненных форм обязано предшествующему предку современных видов.

Теорию эндосимбиотического происхождения хлоропластов впервые предложил в 1883 году Андреас Шимпер, показавший их саморепликацию внутри клетки.

Ее возникновению предшествовал вывод А. С. Фаминцына и О. В. Баранецкого о двойственной природе лишайников - симбиотического комплекса гриба и водоросли (1867 год).

Четкие положения системы были составлены русским ботаником и зоологом К. С. Мережковским.

В 1905 году он предложил само название «симбиогенез», впервые детально сформулировал теорию и создал на ее основе новую систему органического мира. Фаминцын в 1907 году, опираясь на работы Шимпера, также пришел к выводу, что хлоропласты являются симбионтами, как и водоросли в составе лишайников.

В 1920-е годы теория была развита Б. М. Козо-Полянским, было высказано предположение, что симбионтами являются и митохондрии. Затем долгое время о симбиогенезе практически не упоминали в научной литературе. Второе рождение расширенная и конкретизированная теория получила уже в работах Линн Маргулис, начиная с 1960-х годов.

В результате изучения последовательности оснований в митохондриальной ДНК были получены весьма убедительные доводы в пользу того, что митохондрии - это потомки аэробных бактерий (прокариот), родственных риккетсиям, поселившихся некогда в предковой эукариотической клетке и «научившимися» жить в ней в качестве симбионтов. Теперь митохондрии есть почти во всех эукариотических клетках, размножаться вне клетки они уже не способны.

Существуют свидетельства того, что первоначально эндосимбиотические предки митохондрий не могли ни импортировать белки, ни экспортировать АТФ. Вероятно, первоначально они получали от клетки-хозяина пируват, выгода для хозяина состояла в обезвреживании аэробными симбионтами токсичного для нуклеоцитоплазмы кислорода.

Пластиды, подобно митохондриям, имеют свои собственные прокариотические ДНК и рибосомы. По-видимому, хлоропласты произошли от фотосинтезирующих бактерий, поселившихся в свое время в гетеротрофных клетках протистов и превратив их в автотрофные водоросли.

Доказательства

Митохондрии и пластиды:

Имеют две полностью замкнутые мембраны. При этом внешняя сходна с мембранами вакуолей, внутренняя - бактерий,

Размножаются бинарным делением (причем делятся иногда независимо от деления клетки), никогда не синтезируются de novo,

Генетический материал - кольцевая ДНК, не связанная с гистонами (По доле ГЦ ДНК митохондрий и пластид ближе к ДНК бактерий, чем к ядерной ДНК эукариот),

Имеют свой аппарат синтеза белка - рибосомы и другие рибосомы прокариотического типа - c константой седиментации 70S. По строению 16s рРНК близки к бактериальной.

Некоторые белки этих органелл похожи по своей первичной структуре на аналогичные белки бактерий и не похожи на соответствующие белки цитоплазмы.

Проблемы

ДНК митохондрий и пластид, в отличие от ДНК большинства прокариот, содержат интроны.

В собственной ДНК митохондрий и хлоропластов закодирована только часть их белков, а остальные закодированы в ДНК ядра клетки. В ходе эволюции происходило «перетекание» части генетического материала из генома митохондрий и хлоропластов в ядерный геном. Этим объясняется тот факт, что ни хлоропласты, ни митохондрии не могут более существовать (размножаться) независимо.

Не решен вопрос о происхождении ядерно-цитоплазматического компонента (ЯЦК), захватившего прото-митохондрии. Ни бактерии, ни археи не способны к фагоцитозу, питаясь исключительно осмотрофно. Молекулярно-биологические и биохимические исследования указывают на химерную архейно-бактериальную сущность ЯЦК. Как произошло слияние организмов из двух доменов, также не ясно.

Примеры эндосимбиозов

В наши дни существует ряд организмов, содержащих внутри своих клеток другие клетки в качестве эндосимбионтов. Они, однако, не являются сохранившимися до наших дней первичными эукариотами, у которых симбионты еще не интегрировались в единое целое и не потеряли своей индивидуальности. Тем не менее, они наглядно и убедительно показывают возможность симбиогенеза.

Mixotricha paradoxa - наиболее интересный с этой точки зрения организм. Для движения она использует более 250 000 бактерий Treponema spirochetes, прикрепленных к поверхности ее клетки. Митохондрии у этого организма вторично потеряны, однако внутри его клетки есть сферические аэробные бактерии, заменяющие эти органеллы.

Амебы рода Pelomyxa также не содержат митохондрий и образуют симбиоз с бактериями.

Инфузории рода Paramecium постоянно содержат внутри клеток водоросли, в частности, Paramecium bursaria образует эндосимбиоз с зелеными водорослями рода хлорелла (Chlorella).

Одноклеточная жгутиковая водоросль Cyanophora paradoxa содержит цианеллы - органоиды, напоминающие типичные хлоропласты красных водорослей, однако отличающиеся от них наличием тонкой клеточной стенки, содержащей пептидогликан. Размер генома цианелл такой же, как у типичных хлоропластов, и во много раз меньше, чем у цианобактерий.

Гипотезы эндосимбиотического происхождения других органелл

Эндосимбиоз - наиболее широко признанная версия происхождения митохондрий и пластид. Но попытки объяснить подобным образом происхождение других органелл и структур клетки не находят достаточных доказательств и наталкиваются на обоснованную критику.

Пероксисомы

Кристиан де Дюв обнаружил пероксисомы в 1965 году. Ему же принадлежит предположение, что пероксисомы были первыми эндосимбионтами эукариотической клетки, позволившими ей выживать при нарастающем количестве свободного молекулярного кислорода в земной атмосфере. Пероксисомы, однако, в отличие от митохондрий и пластид, не имеют ни генетического материала, ни аппарата для синтеза белка. Было показано, что эти органеллы формируются в клетке de novo в ЭПР и нет никаких оснований считать их эндосимбионтами.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!