Это жизнь - портал для женщин

Презентация на тему "история развития вычислительной техники". Презентация - история развития вычислительной техники Презентация история развития средств вычислительной техники

Люди учились считать, используя собственные пальцы. Когда этого оказалось недостаточно, возникли простейшие счетные приспособления. Особое место среди них занял АБАК, получивший в древнем мире широкое распространение. Люди учились считать, используя собственные пальцы. Когда этого оказалось недостаточно, возникли простейшие счетные приспособления. Особое место среди них занял АБАК, получивший в древнем мире широкое распространение. Сделать абак совсем несложно, достаточно разлиновать столбцами дощечку или просто нарисовать столбцы на песке. Каждому из столбцов присваивалось значение разряда чисел: разряд единиц, десятков, сотен, тысяч. Числа обозначались набором камешков, ракушек, веточек и т.п., раскладываемых по различным столбцам – разрядам. Добавляя или убирая из соответствующих столбцов то или иное количество камешков, можно было производить сложение или вычитание и даже умножение и деление как многократное сложение и вычитание соответственно. Сделать абак совсем несложно, достаточно разлиновать столбцами дощечку или просто нарисовать столбцы на песке. Каждому из столбцов присваивалось значение разряда чисел: разряд единиц, десятков, сотен, тысяч. Числа обозначались набором камешков, ракушек, веточек и т.п., раскладываемых по различным столбцам – разрядам. Добавляя или убирая из соответствующих столбцов то или иное количество камешков, можно было производить сложение или вычитание и даже умножение и деление как многократное сложение и вычитание соответственно.


Очень похожи на абак по принципу действия русские счеты. В них вместо столбцов – горизонтальные направляющие с косточками. На Руси счетами пользовались просто виртуозно. Они были незаменимым инструментом торговцев, приказчиков, чиновников. Из России этот простой и полезный прибор проник и в Европу. Очень похожи на абак по принципу действия русские счеты. В них вместо столбцов – горизонтальные направляющие с косточками. На Руси счетами пользовались просто виртуозно. Они были незаменимым инструментом торговцев, приказчиков, чиновников. Из России этот простой и полезный прибор проник и в Европу.


Первым механическим счетным устройством была счетная машина, построенная в 1642 году выдающимся французским ученым Блезом Паскалем. Первым механическим счетным устройством была счетная машина, построенная в 1642 году выдающимся французским ученым Блезом Паскалем. Механический «компьютер» Паскаля мог складывать и вычитать. «Паскалина» – так называли машину – состояла из набора вертикально установленных колес с нанесенными на них цифрами от 0 до 9. При полном обороте колеса оно сцеплялось с соседним колесом и поворачивало его на одно деление. Число колес определяло число разрядов – так, два колеса позволяли считать до 99, три – уже до 999, а пять колес делали машину «знающей» даже такие большие числа как Считать на «Паскалине» было очень просто. Механический «компьютер» Паскаля мог складывать и вычитать. «Паскалина» – так называли машину – состояла из набора вертикально установленных колес с нанесенными на них цифрами от 0 до 9. При полном обороте колеса оно сцеплялось с соседним колесом и поворачивало его на одно деление. Число колес определяло число разрядов – так, два колеса позволяли считать до 99, три – уже до 999, а пять колес делали машину «знающей» даже такие большие числа как Считать на «Паскалине» было очень просто.


В 1673 году немецкий математик и философ Готфрид Вильгельм Лейбниц создал механическое счетное устройство, которое не только складывало и вычитало, но и умножало и делило. Машина Лейбница была сложнее «Паскалины». В 1673 году немецкий математик и философ Готфрид Вильгельм Лейбниц создал механическое счетное устройство, которое не только складывало и вычитало, но и умножало и делило. Машина Лейбница была сложнее «Паскалины».


Числовые колеса, теперь уже зубчатые, имели зубцы девяти различных длин, и вычисления производились за счет сцепления колес. Именно несколько видоизмененные колеса Лейбница стали основой массовых счетных приборов – арифмометров, которыми широко пользовались не только в ХIХ веке, но и сравнительно недавно наши дедушки и бабушки. Числовые колеса, теперь уже зубчатые, имели зубцы девяти различных длин, и вычисления производились за счет сцепления колес. Именно несколько видоизмененные колеса Лейбница стали основой массовых счетных приборов – арифмометров, которыми широко пользовались не только в ХIХ веке, но и сравнительно недавно наши дедушки и бабушки. Есть в истории вычислительной техники ученые, чьи имена, связанные с наиболее значительными открытиями в этой области, известны сегодня даже неспециалистам. Среди них английский математик Х1Х века Чарльз Бэббидж, которого часто называют «отцом современной вычислительной техники». В 1823 году Бэббидж начал работать над своей вычислительной машиной, состоявшей из двух частей: вычисляющей и печатающей. Машина предназначалась в помощь британскому морскому ведомству для составления различных мореходных таблиц. Есть в истории вычислительной техники ученые, чьи имена, связанные с наиболее значительными открытиями в этой области, известны сегодня даже неспециалистам. Среди них английский математик Х1Х века Чарльз Бэббидж, которого часто называют «отцом современной вычислительной техники». В 1823 году Бэббидж начал работать над своей вычислительной машиной, состоявшей из двух частей: вычисляющей и печатающей. Машина предназначалась в помощь британскому морскому ведомству для составления различных мореходных таблиц.


Первая, вычисляющая часть машины была почти закончена к 1833 году, а вторую, печатающую, удалось довести почти до половины, когда расходы превысили фунтов стерлингов (около долларов). Больше денег не было, и работы пришлось закрыть. Первая, вычисляющая часть машины была почти закончена к 1833 году, а вторую, печатающую, удалось довести почти до половины, когда расходы превысили фунтов стерлингов (около долларов). Больше денег не было, и работы пришлось закрыть. Хотя машина Бэббиджа и не была закончена, ее создатель выдвинул идеи, которые и легли в основу устройства всех современных компьютеров. Бэббидж пришел к выводу – вычислительная машина должна иметь устройство для хранения чисел, предназначенных для вычислений, а также указаний (команд) машине о том, что с этими числами делать. Следующие одна за другой команды получили название «программы» работы компьютера, а устройство для хранения информации назвали «памятью» машины. Однако хранение чисел даже вместе с программой – только полдела. Главное – машина должна производить с этими числами указанные в программе операции. Бэббидж понял, что для этого в машине должен быть специальный вычислительный блок – процессор. Именно по такому принципу и устроены современные компьютеры. Хотя машина Бэббиджа и не была закончена, ее создатель выдвинул идеи, которые и легли в основу устройства всех современных компьютеров. Бэббидж пришел к выводу – вычислительная машина должна иметь устройство для хранения чисел, предназначенных для вычислений, а также указаний (команд) машине о том, что с этими числами делать. Следующие одна за другой команды получили название «программы» работы компьютера, а устройство для хранения информации назвали «памятью» машины. Однако хранение чисел даже вместе с программой – только полдела. Главное – машина должна производить с этими числами указанные в программе операции. Бэббидж понял, что для этого в машине должен быть специальный вычислительный блок – процессор. Именно по такому принципу и устроены современные компьютеры. Научные идеи Бэббиджа увлекли дочь знаменитого английского поэта лорда Научные идеи Бэббиджа увлекли дочь знаменитого английского поэта лорда Джорджа Байрона – графиню Аду Августу Лавлейс. В то время еще не было таких понятий, как программирование для ЭВМ, но тем не менее Аду Лавлейс по праву считают первым в мире программистом – так сейчас называют людей, способных Джорджа Байрона – графиню Аду Августу Лавлейс. В то время еще не было таких понятий, как программирование для ЭВМ, но тем не менее Аду Лавлейс по праву считают первым в мире программистом – так сейчас называют людей, способных «объяснить» на понятном машине языке ее задачи. Дело в том, что Бэббидж не оставил ни одного полного описания изобретенной им машины. Это сделал один из его учеников в статье на французском языке. Ада Лавлейс перевела ее на английский, добавив собственные программы, по которым машина могла бы проводить сложные математические расчеты. В результате первоначальный объем статьи вырос втрое, а Бэббидж получил возможность продемонстрировать мощь своей машины. Многими понятиями, введенными Адой Лавлейс в описаниях тех первых в мире программ, широко пользуются современные программисты. В честь первого в мире программиста назван один из самых современных и совершенных языков компьютерного программирования – АДА. «объяснить» на понятном машине языке ее задачи. Дело в том, что Бэббидж не оставил ни одного полного описания изобретенной им машины. Это сделал один из его учеников в статье на французском языке. Ада Лавлейс перевела ее на английский, добавив собственные программы, по которым машина могла бы проводить сложные математические расчеты. В результате первоначальный объем статьи вырос втрое, а Бэббидж получил возможность продемонстрировать мощь своей машины. Многими понятиями, введенными Адой Лавлейс в описаниях тех первых в мире программ, широко пользуются современные программисты. В честь первого в мире программиста назван один из самых современных и совершенных языков компьютерного программирования – АДА.


Новинки техники ХХ века оказались неразрывно связанными с электричеством. Вскоре после появления электронных ламп, в 1918 году советский ученый М.А.Бонч-Бруевич изобрел ламповый триггер – электронное устройство, способное запоминать электрические сигналы. Новинки техники ХХ века оказались неразрывно связанными с электричеством. Вскоре после появления электронных ламп, в 1918 году советский ученый М.А.Бонч-Бруевич изобрел ламповый триггер – электронное устройство, способное запоминать электрические сигналы. По принципу действия триггер похож на качели с защелками, установленными в верхних точках качания. Достигнут качели одной верхней точки – сработает защелка, качание остановится, и в этом устойчивом состоянии они могут быть как угодно долго. Откроется защелка – качание возобновится до другой верхней точки, здесь также сработает защелка, снова остановка, и так – сколько угодно раз.


Первые компьютеры считали в тысячи раз быстрее механических счетных машин, но были очень громоздкими. ЭВМ занимала помещение размером 9 х 15 м, весила около 30 тонн и потребляла 150 киловатт в час. В такой ЭВМ было около 18 тысяч электронных ламп. Первые компьютеры считали в тысячи раз быстрее механических счетных машин, но были очень громоздкими. ЭВМ занимала помещение размером 9 х 15 м, весила около 30 тонн и потребляла 150 киловатт в час. В такой ЭВМ было около 18 тысяч электронных ламп.


Второе поколение электронных компьютеров обязано своим появлением важнейшему изобретению электроники ХХ века – транзистору. Миниатюрный полупроводниковый прибор позволил резко уменьшить габариты компьютеров и снизить потребляемую мощность. Скорость компьютеров возросла до миллиона операций в секунду. Второе поколение электронных компьютеров обязано своим появлением важнейшему изобретению электроники ХХ века – транзистору. Миниатюрный полупроводниковый прибор позволил резко уменьшить габариты компьютеров и снизить потребляемую мощность. Скорость компьютеров возросла до миллиона операций в секунду. В сотни раз сократить число электронных элементов в компьютере позволило изобретение в 1950 году интегральных микросхем – полупроводниковых кристаллов, содержащих большое количество соединенных между собой транзисторов и других элементов. ЭВМ третьего поколения на интегральных микросхемах появились в 1964 году. В сотни раз сократить число электронных элементов в компьютере позволило изобретение в 1950 году интегральных микросхем – полупроводниковых кристаллов, содержащих большое количество соединенных между собой транзисторов и других элементов. ЭВМ третьего поколения на интегральных микросхемах появились в 1964 году.


В июне 1971 года была впервые разработана очень сложная универсальная интегральная микросхема, названная микропроцессором – важнейшим элементом компьютеров четвертого поколения. В июне 1971 года была впервые разработана очень сложная универсальная интегральная микросхема, названная микропроцессором – важнейшим элементом компьютеров четвертого поколения.

Счет на пальцах Пальцевый счет уходит корнями в глубокую древность, встречаясь в том или ином виде у всех народов и в наши дни. Известные средневековые математики рекомендовали в качестве вспомогательного средства именно пальцевый счет, допускающий довольно эффективные системы счета.



Счет с помощью предметов Например, у народов доколумбовой Америки был весьма развит узелковый счет. Более того, система узелков выполняла также роль своего рода хроник и летописей, имея достаточно сложную структуру. Однако, использование ее требовало хорошей тренировки памяти. Чтобы сделать процесс счета более удобным, первобытный человек начал использовать вместо пальцев другие приспособления. Фиксация результатов счета производилась различными способами: нанесение насечек, счетные палочки, узелки и др.


Абак и счеты Счет с помощью группировки и перекладывания предметов явился предшественником счета на абаке - наиболее развитом счетном приборе древности, сохранившимся до наших дней в виде различного типа счетов. Абак явился первым развитым счетным прибором в истории человечества, основным отличием которого от предыдущих способов вычислений было выполнение вычислений по разрядам. Хорошо приспособленный к выполнению операций сложения и вычитания, абак оказался недостаточно эффективным прибором для выполнения операций умножения и деления.




Введенные в 1614 г. Дж. Непером логарифмы оказали революционизирующее влияние на все последующее развитие счета, чему в значительной степени способствовало появление целого ряда логарифмических таблиц, вычисленных как самим Непером, так и рядом других известных в то время вычислителей. Впоследствии появляется целый ряд модификаций логарифмических таблиц. Однако, в практической работе использование логарифмических таблиц имеет ряд неудобств, поэтому Дж. Непер в качестве альтернативного метода предложил специальные счетные палочки (названные впоследствии палочками Непера), позволявшие производить операции умножения и деления непосредственно над исходными числами. В основу данного метода Непер положил способ умножения решеткой. Наряду с палочками Непер предложил счетную доску для выполнения операций умножения, деления, возведения в квадрат и извлечения квадратного корня в двоичной с.с., предвосхитив тем самым преимущества такой системы счисления для автоматизации вычислений. Логарифмы послужили основой создания замечательного вычислительного инструмента - логарифмической линейки, более 360 лет служащего инженерно-техническим работникам всего мира. Палочки Непера и логарифмическая линейка




В 1623 г. немецкий ученый Вильгельм Шиккард предложил свое решение на базе шестиразрядного десятичного вычислителя, состоявшего также из зубчатых колес, рассчитанного на выполнение сложения, вычитания, а также табличного умножения и деления г. Первым реально осуществленным и ставшим известным механическим цифровым вычислительным устройством стала "Паскаля", созданная французским ученым Блезом Паскалем. Это было шести- или восьмиразрядное устройство на зубчатых колесах, способное суммировать и вычитать десятичные числа. Машина Шиккарда и Паскаля


1673 г. Через 30 лет после "Паскалины" появился "арифметический прибор" Готфрида Вильгельма Лейбница - двенадцатиразрядное десятичное устройство для выполнения арифметических операций, включая умножение и деление. Конец XVIII века. Жозеф Жаккард создает ткацкий станок с программным управлением при помощи перфокарт. Гаспар де Прони разрабатывает новую технологию вычислений в три этапа: разработка численного метода, составление программы последовательности арифметических действий, проведение вычислений путем арифметических операций над числами в соответствии с оставленной программой.


Гениальную идею Беббиджа осуществил Говард Айкен, американский ученый, создавший в 1944 г. первую в США релейно-механическую вычислительную машину. Ее основные блоки - арифметики и памяти были исполнены на зубчатых колесах гг. Чарльз Беббидж разрабатывает проект Аналитической машины - механической универсальной цифровой вычислительной машины с программным управлением. Были созданы отдельные узлы машины. Всю машину из-за ее громоздкости создать не удалось. Аналитическая машина Бэббиджа


В конце XIX в. Были созданы более сложные механические устройства. Самым важным из них было устройство, разработанное американцем Германом Холлеритом. Исключительность его заключалась в том, что в нем впервые была употреблена идея перфокарт и расчеты велись с помощью электрического тока. В 1897 г. Холлерит организовал фирму, которая в дальнейшем стала называться IBM. Машина Германа Холлерита Наиболее крупные проекты в это же время были выполнены в Германии (К. Цузе) и США (Д. Атанасов, Г. Айкен и Д. Стиблиц). Данные проекты можно рассматривать в качестве прямых предшественников универсальных ЭВМ.


Гг. В Англии при участии Алана Тьюринга была создана вычислительная машина " Colossus ". В ней было уже 2000 электронных ламп. Машина предназначалась для расшифровки радиограмм германского Вермахта г. Под руководством американца Говарда Айкена, по заказу и при поддержке фирмы IBM создан Mark-1 - первый программно- управляемый компьютер. Он был построен на электромеханических реле, а программа обработки данных вводилась с перфоленты. Colossus и Mark-1


ЭВМ первого поколения 1946 – 1958 г.г. Основной элемент – электронная лампа. Из-за того, что высота стеклянной лампы - 7см, машины были огромных размеров. Каждые 7-8 мин. одна из ламп выходила из строя, а так как в компьютере их было тысяч, то для поиска и замены поврежденной лампы требовалось очень много времени. Ввод чисел в машины производился с помощью перфокарт, а программное управление осуществлялось, например в ENIAC, с помощью штекеров и наборных полей. Когда все лампы работали, инженерный персонал мог настроить ENIAC на какую-нибудь задачу, вручную изменив подключение проводов.


Машины первого поколения Машины этого поколения: «БЭСМ», «ENIAC», «МЭСМ», «IBM -701», «Стрела», «М-2», «М-3», «Урал», «Урал-2», «Минск-1», «Минск-12», «М-20». Эти машины занимали большую площадь и использовали много электроэнергии. Их быстродействие не превышало 23 тыс. операций в секунду, оперативная память не превышала 2 Кб.


ЭВМ второго поколения 1959 – 1967 г.г. Основной элемент – полупроводниковые транзисторы. Первый транзистор способен был заменить ~ 40 электронных ламп и работает с большой скоростью. В качестве носителей информации использовались магнитные ленты и магнитные сердечники, появились высокопроизводительные устройства для работы с магнитными лентами, магнитные барабаны и первые магнитные диски. Большое внимание начали уделять созданию системного программного обеспечения, компиляторов и средств ввода-вывода.


Машины второго поколения В СССР в 1967 году вступила в строй наиболее мощная в Европе ЭВМ второго поколения БЭСМ-6 (Быстродействующая Электронная Счетная Машина 6). Также в то же время были созданы эвм Минск-2,Урал-14. Появление полупроводниковых элементов в электронных схемах существенно увеличило емкость оперативной памяти, надежность и быстродействие ЭВМ. Уменьшились размеры, масса и потребляемая мощность. Машины предназначались для решения различных трудоемких научно- технических задач, а также для управления технологическими процессами в производстве.


ЭВМ третьего поколения 1968– 1974 г.г. Основной элемент – интегральная схема. В 1958 году Роберт Нойс изобрел малую кремниевую интегральную схему, в которой на небольшой площади можно было размещать десятки транзисторов. Одна ИС способна заменить десятки тысяч транзисторов. Один кристалл выполняет такую же работу, как и 30-ти тонный Эниак. А компьютер с использованием ИС достигает производительности в операций в секунд. В конце 60-х годов появляется полупроводниковая память, которая и по сей день используется в персональных компьютерах в качестве оперативной В 1964 г., фирма IBM объявила о создании шести моделей семейства IBM 360 (System360), ставших первыми компьютерами третьего поколения.


Машины третьего поколения. Машины третьего поколения имеют развитые операционные системы. Они обладают возможностями мультипрограммирования, т.е. одновременного выполнения нескольких программ. Многие задачи управления памятью, устройствами и ресурсами стала брать на себя операционная система или же непосредственно сама машина. Примеры машин третьего поколения – семейства IBM-360, IBM-370, ЕС ЭВМ (Единая система ЭВМ), СМ ЭВМ (Семейство малых ЭВМ) и др. Быстродействие машин внутри семейства изменяется от нескольких десятков тысяч до миллионов операций в секунду. Емкость оперативной памяти достигает нескольких сотен тысяч слов.


ЭВМ четвертого поколения 1975 – по настоящее время Основной элемент – большая интегральная схема. С начала 80-х, благодаря появлению персональных компьютеров, вычислительная техника становится массовой и общедоступной. С точки зрения структуры машины этого поколения представляют собой многопроцессорные и многомашинные комплексы, работающие на общую память и общее поле внешних устройств. Емкость оперативной памяти порядка 1 – 64 Мбайт. «Эльбрус» «Макинтош»


Персональные компьютеры Современные персональные компьютеры компактны и обладают в тысячи раз большим быстродействием по сравнению с первыми персональными компьютерами (могут выполнять несколько миллиардов операций в секунду). Ежегодно в мире производится почти 200 миллионов компьютеров, доступных по цене для массового потребителя. Большие компьютеры и суперкомпьютеры продолжают развиваться. Но теперь они уже не доминируют, как было раньше.


Перспективы развития компьютерной техники. Примерно в годах должны появиться молекулярные компьютеры, квантовые компьютеры, биокомпьютеры и оптические компьютеры. Компьютер будущего облегчит и упростит жизнь человека ещё в десятки раз. По словам учёных и исследователей, в ближайшем будущем персональные компьютеры кардинально изменятся, так как уже сегодня ведутся разработки новейших технологий, которые ранее никогда не применялись.


Принципы фон Неймана 1.Арифметико-логическое устройство (выполняет все арифметические и логические операции); 2.Устройство управления (которое организует процесс выполнения программ); 3.Запоминающее устройство (память для хранения информации); 4.Устройства ввода и вывода (позволяет вводить и выводить информацию).


1.Устройство для ввода информации с помощью нажатия на кнопки. 2.Устройство, с помощью которого можно подключиться к сети Интернет. 3.Устройство, выводящее информацию из компьютера на бумагу. 4.Устройство для ввода информации. 5.Устройство вывода информации на экран. 6.Устройство, копирующее любую информацию в компьютер с бумаги. КРОССВОРД


Источники информации. 1.Н.Д. Угринович Информатика и ИКТ: учебник для 11 классов. – М.: БИНОМ. Лаборатория знаний, Виртуальный музей вычислительной техники Виртуальный музей информатики Википедия - виртуальная энциклопедия

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

Древние средства счета Первые вычислительные машины Первые компьютеры Принципы фон Неймана Поколения компьютеров (I-IV) Персональные компьютеры Современная цифровая техника

2 слайд

Описание слайда:

Вычислительная техника является важнейшим компонентом процесса вычислений и обработки данных. Первыми приспособлениями для вычислений были всем известные счётные палочки, камешки, косточки и любые другие подручные мелкие предметы. Развиваясь, эти приспособления становились более сложными, например, такими как финикийские глиняные фигурки, также предназначаемые для наглядного представления количества считаемых предметов, однако для удобства помещаемые при этом в специальные контейнеры. Такими приспособлениями, похоже, пользовались торговцы и счетоводы того времени.

3 слайд

Описание слайда:

Кости с зарубками («вестоницкая кость», Чехия, 30 тыс. лет до н.э) Узелковое письмо (Южная Америка, VII век н.э.) узлы с вплетенными камнями нити разного цвета (красная – число воинов, желтая – золото) десятичная система Древние средства фиксации счета

4 слайд

Описание слайда:

Китайские счетные палочки Примерно за тысячу лет до новой эры в Китае появилась счетная доска, считающаяся одним из первых инструментов счета. Вычисления на счетной доске велись с помощью палочек, различные комбинации из которых обозначали числа. Для нуля особого обозначения не было. Вместо него оставляли пропуск - пустое место. На счетной доске производилось сложение, вычитание, умножение и деление. Рассмотрим пример сложения двух чисел на счетной доске (6784 + 1 348 = 8 132). 1. Снизу доски выкладывается оба слагаемых. 2. Складываются старшие разряды (6000+1000=7000) и результат выкладывается над первым слагаемым, с соблюдением разрядности. 3. Оставшиеся разряды первого слагаемого выкладываются в середину строки результата сложения старших разрядов. Оставшиеся разряды второго слагаемого выкладываются над этим слагаемым. 4. Складываются разряды сотен (700+300=1000) и результат прибавляется к ранее полученному (1000+7000=8000). Полученное число выкладывается в третьей строке, над первым слагаемым. Неиспользованные разряды слагаемых так же выкладываются в третьей строке. 5. Аналогичную операцию проводим с разрядами десяток. Полученный результат (8120) и оставшиеся разряды слагаемых (4 и 8) выкладываем в четвертую строку. 6. Складываем оставшиеся разряды (4+8=12) и прибавляем к ранее полученному результату (8120+12=8132). Полученный результат выкладываем в пятую строку. Число в пятой строке и есть результат сложения чисел 6784 и 1348.

5 слайд

Описание слайда:

о. Саламин в Эгейском море (300 лет до н.э.) Размер 105×75, мрамор Саламинская доска Саламинская доска служила для пятеричного счисления, что подтверждают буквенные обозначения на ней. Камешки, символизирующие разряды чисел, укладывались только между линиями. Колонки, располагающиеся на плите слева, использовались для подсчета драхм и талантов, справа – для долей драхмы (оболы и халки).

6 слайд

Описание слайда:

Абак (Древний Рим) – V-VI в. до н.э. Суан-пан (Китай) – II-VI в. Соробан (Япония) XV-XVI в. Счеты (Россия) – XVII в. Абак и его «родственники»

7 слайд

Описание слайда:

Доска абака была разделена линиями на полосы, счёт осуществлялся с помощью размещённых на полосах камней или других подобных предметов. Счётные марки (камешки, косточки) передвигались по линиям или углублениям. В 5 в. до н. э. в Египте вместо линий и углублений стали использовать палочки и проволоку с нанизанными камешками. Реконструкция римского абака

8 слайд

Описание слайда:

Китайский и японский варианты суаньпань Впервые упоминается в книге «Шушу цзии» (数术记遗) Сюй Юэ (岳撰) (190 год). Современный тип этого счётного прибора был создан позднее, по-видимому, в XII столетии. Суаньпань представляет собой прямоугольную раму, в которой параллельно друг другу протянуты проволоки или верёвки числом от девяти и более. Перпендикулярно этому направлению суаньпань перегорожен на две неравные части. В большом отделении («земля») на каждой проволоке нанизано по пять шариков (косточек), в меньшем («небо») - по два. Проволоки соответствуют десятичным разрядам. Суаньпань изготовлялись всевозможных размеров, вплоть до самых миниатюрных - в коллекции Перельмана имелся привезённый из Китая экземпляр в 17 мм длины и 8 мм ширины. Китайцы разработали изощрённую технику работы на счётной доске. Их методы позволяли быстро производить над числами все 4 арифметические операции, а также извлекать квадратные и кубические корни.

9 слайд

Описание слайда:

Вычисления на соробане ведутся слева направо, начиная со старшего разряда следующим образом: 1.Перед началом счета соробан сбрасывается путем встряхивания косточек вниз. Затем верхние косточки отодвигаются от поперечной планки. 2.Вводится первое слагаемое слева направо, начиная со старшего разряда. Стоимость верхней косточки – 5, нижних – 1. Для ввода каждого разряда необходимое число косточек придвигается к поперечной планке. 3.Поразрядно, слева направо, прибавляется второе слагаемое. При переполнении разряда прибавляется единица к старшему (левому) разряду. 4.Вычитание производится аналогично, но при нехватке косточек в разряде они занимаются у старшего разряда.

10 слайд

Описание слайда:

Счёты в XX веке часто использовали в магазинах, в бухгалтерском деле, для арифметических расчётов. С развитием прогресса их заменили электронные калькуляторы. Тот железный прут в счётах, на котором находятся всего 4 костяшки, использовался для расчётов в полушках. 1 полушка была равна половине деньги, то есть четверти копейки, соответственно, четыре костяшки составляли одну копейку. В наши дни этот прут отделяет целую часть набранного на счётах числа от дробной, и в вычислениях не используется.

11 слайд

12 слайд

Описание слайда:

Вильгельм Шиккард (XVI в.) – (машина построена, но сгорела) Первые проекты счетных машин Первая механическая машина была описана в 1623 г. профессором математики Тюбингенского университета Вильгельмом Шиккардом, реализована в единственном экземпляре и предназначалась для выполнения четырех арифметических операций над 6-разрядными числами. Машина Шиккарда состояла из трех независимых устройств: суммирующего, множительного и записи чисел. Сложение производилось последовательным вводом слагаемых посредством наборных дисков, а вычитание - последовательным вводом уменьшаемого и вычитаемого. Для выполнения операции умножения использовалась идея умножения решеткой. Третья часть машины использовалась для записи числа длиною не более 6 разрядов. Использованная принципиальная схема машины Шиккарда явилась классической - она (или ее модификации) использовалась в большинстве последующих механических счетных машин вплоть до замены механических деталей электромагнитными. Однако из-за недостаточной известности машина Шиккарда и принципы ее работы не оказали существенного влияния на дальнейшее развитие ВТ, но она по праву открывает эру механической вычислительной техники.

13 слайд

Описание слайда:

’ «Паскалина» (1642) Принцип действия счетчиков в машине Паскаля прост. Для каждого разряда имеется колесо (шестеренка) с десятью зубцами. При этом каждый из десяти зубцов представляет одну из цифр от 0 до 9. Такое колесо получило название "десятичное счетное колесо". С прибавлением в данном разряде каждой единицы счетное колесо поворачивается на один зубец, т. е. на одну десятую оборота. Задача теперь в том, как осуществить перенос десятков. Машина, в которой сложение выполняется механически, должна сама определять, когда нужно производить перенос. Допустим, что мы ввели в разряд девять единиц. Счетное колесо повернется на 9/10 оборота. Если теперь прибавить еще одну единицу, колесо "накопит" уже десять единиц. Их надо передать в следующий разряд. Это и есть передача десятков. В машине Паскаля ее осуществляет удлиненный зуб. Он сцепляется с колесом десятков и поворачивает его на 1/10 оборота. В окошке счетчика десятков появится единица - один десяток, а в окошке счетчика единиц снова покажется нуль. Блез Паскаль (1623 - 1662)

14 слайд

Описание слайда:

Вильгельм Готфрид Лейбниц (1646 - 1716) сложение, вычитание, умножение, деление! 12-разрядные числа десятичная система Арифмометр «Феликс» (СССР, 1929-1978) – развитие идей машины Лейбница Машина Лейбница (1672)

15 слайд

Описание слайда:

Имя этого человека, которому суждено было открыть новую и, пожалуй, наиболее яркую страницу в истории вычислительной техники - Чарльз Бэббидж. За свою долгую жизнь (1792-1871) кембриджский профессор математики сделал немало открытий и изобретений, значительно опередивших его время. Круг интересов Бэббиджа был чрезвычайно широк, и все же главным делом его жизни, по словам самого ученого, были вычислительные машины, над созданием которых он работал около 50 лет. В 1833 г., приостановив работы над разностной машиной, Бэббидж начал осуществлять проект универсальной автоматической машины для любых вычислений. Это устройство, обеспечивающее автоматическое выполнение заданной программы вычислений, он назвал аналитической машиной. Аналитическая машина, которую сам изобретатель, а затем его сын, строили с перерывами в течение 70 лет, так и не была построена. Изобретение это настолько опередило свое время, что идеи, заложенные в нем, удалось реализовать лишь в середине XX века в современных ЭВМ. Но какое удовлетворение испытал бы этот замечательный ученый, узнав, что структура вновь изобретенных почти через столетие универсальных вычислительных машин, по существу, повторяет структуру его аналитической машины. Машины Чарльза Бэббиджа

16 слайд

Описание слайда:

Разностная машина (1822) Аналитическая машина (1834) «мельница» (автоматическое выполнение вычислений) «склад» (хранение данных) «контора» (управление) ввод данных и программы с перфокарт ввод программы «на ходу» работа от парового двигателя Ада Лавлейс (1815-1852) первая программа – вычисление чисел Бернулли (циклы, условные переходы) 1979 – язык программирования Ада Машины Чарльза Бэббиджа

17 слайд

Описание слайда:

Аналитическую машину Бэббиджа (прообраз современных компьютеров) по сохранившимся описаниям и чертежам построили энтузиасты из Лондонского музея науки в 1991 году. Аналитическая машина состоит из четырех тысяч стальных деталей и весит три тонны. Машины Чарльза Бэббиджа

18 слайд

Описание слайда:

Аналитическая машина Бэббиджа представляла собой единый комплекс специализированных блоков. По проекту она включала следующие устройства. Первое - устройство для хранения исходных данных и промежуточных результатов. Бэббидж назвал его "складом"; в современных вычислительных машинах устройство такого типа называется памятью или запоминающим устройством. Для хранения чисел Бэббидж предложил использовать набор десятичных счетных колес. Каждое из колес могло останавливаться в одном из десяти положений и таким образом запоминать один десятичный знак. Колеса собирались в регистры для хранения многоразрядных десятичных чисел. По замыслу автора запоминающее устройство должно было иметь емкость в 1000 чисел по 50 десятичных знаков "для того, чтобы иметь некоторый запас по отношению к наибольшему числу, которое может потребоваться". Для сравнения скажем, что запоминающее устройство одной из первых ЭВМ имело объем 250 десятиразрядных чисел. Для создания памяти, где хранилась информация, Бэббидж использовал не только колесные регистры, но и большие металлические диски с отверстиями. В памяти на дисках хранились таблицы значений специальных функций, которые использовались в процессе вычислений. Второе устройство машины - устройство, в котором осуществлялись необходимые операции над числами, взятыми из "склада". Бэббидж назвал его "фабрикой", а сейчас подобное устройство называется арифметическим. Время на производство арифметических операций оценивалось автором: сложение и вычитание - 1с; умножение 50-разрядных чисел - 1 мин; деление 100-разрядного числа на 50-разрядное - 1 мин.

19 слайд

Описание слайда:

И наконец, третье устройство машины - устройство, управляющее последовательностью операций, выполняемых над числами. Бэббидж назвал его "конторой"; сейчас оно - устройство управления. Управление вычислительным процессом должно было осуществляться с помощью перфокарт - набором картонных карточек с разным расположением пробитых (перфорированных) отверстий. Карты проходили под щупами, а они, в свою очередь, попадая в отверстия, приводили в движение механизмы, с помощью которых числа передавались со "склада" на "фабрику". Результат машина отправляла обратно на "склад". С помощью перфокарт предполагалось также осуществлять операции ввода числовой информации и вывода полученных результатов. По сути дела, этим решалась проблема создания автоматической вычислительной машины с программным управлением.

20 слайд

Описание слайда:

Арифмометр 1932 года выпуска. Настольная или портативная: Чаще всего арифмометры были настольные или «наколенные» (как современные ноутбуки), изредка встречались карманные модели (Curta). Этим они отличались от больших напольных вычислительных машин, таких как табуляторы (Т-5М) или механические компьютеры (Z-1, Разностная машина Чарльза Бэббиджа). Механическая: Числа вводятся в арифмометр, преобразуются и передаются пользователю (выводятся в окнах счётчиков или печатаются на ленте) с использованием только механических устройств. При этом арифмометр может использовать исключительно механический привод (то есть для работы на них надо постоянно крутить ручку. Этот примитивный вариант используется, например, в «Феликсе») или производить часть операций с использованием электромотора (Наиболее совершенные арифмометры - вычислительные автоматы, например «Facit CA1-13», почти при любой операции используют электромотор).

21 слайд

Описание слайда:

Арифмометр Феликс, курский завод счётных машин «Феликс» - самый распространённый в СССР арифмометр. Выпускался с 1929 по 1978 гг. на заводах счётных машин в Курске, в Пензе и в Москве. Эта счётная машина относится к рычажным арифмометрам Однера. Она позволяет работать с операндами длиной до 9 знаков и получать ответ длиной до 13 знаков (до 8 для частного). Арифмометр Facit CA 1-13 Арифмометр Mercedes R38SM

22 слайд

Описание слайда:

Суммирующая машина - механическая машина, автоматически суммирующая числа, вводимые в неё оператором. Классификация Суммирующие машины бывают двух типов - незаписывающие (отображающие результат вычисления результаты вычисления с помощью поворота цифровых колёс) и записывающие (печатающие ответ на ленте или на листе бумаги). Resulta BS 7 Незаписываюшие Записываюшие Precisa 164 1

23 слайд

Описание слайда:

Основы математической логики: Джордж Буль (1815 - 1864). Электронно-лучевая трубка (Дж. Томсон, 1897) Вакуумные лампы – диод, триод (1906) Триггер – устройство для хранения бита (М.А. Бонч-Бруевич, 1918). Использование математической логики в компьютерах (К. Шеннон, 1936) Прогресс в науке

24 слайд

Описание слайда:

Принцип двоичного кодирования: вся информация кодируется в двоичном виде. Принцип программного управления: программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности. Принцип однородности памяти: программы и данные хранятся в одной и той же памяти. Принцип адресности: память состоит из пронумерованных ячеек; процессору в любой момент времени доступна любая ячейка. («Предварительный доклад о машине EDVAC», 1945) Принципы фон Неймана

25 слайд

Описание слайда:

1937-1941. Конрад Цузе: Z1, Z2, Z3, Z4. электромеханические реле (устройства с двумя состояниями) двоичная система использование булевой алгебры ввод данных с киноленты 1939-1942. Первый макет электронного лампового компьютера, Дж. Атанасофф двоичная система решение систем 29 линейных уравнений Первые электронно-вычислительные машины

26 слайд

Описание слайда:

Разработчик – Говард Айкен (1900-1973) Первый компьютер в США: длина 17 м, вес 5 тонн 75 000 электронных ламп 3000 механических реле сложение – 3 секунды, деление – 12 секунд Марк-I (1944)

27 слайд

Описание слайда:

28 слайд

Описание слайда:

I. 1945 – 1955 электронно-вакуумные лампы II. 1955 – 1965 транзисторы III. 1965 – 1980 интегральные микросхемы IV. с 1980 по … большие и сверхбольшие интегральные схемы (БИС и СБИС) Поколения ЭВМ

29 слайд

Описание слайда:

на электронных лампах Электронная ла́мпа - электровакуумный прибор, работающий за счёт управления интенсивностью потока электронов, движущихся в вакууме или разрежённом газе между электродами. Электронные лампы массово использовались в ХХ веке как активные элементы электронной аппаратуры (усилители, генераторы, детекторы, переключатели и т.п.). быстродействие 10-20 тыс. операций в секунду каждая машина имеет свой язык нет операционных систем ввод и вывод: перфоленты, перфокарты I поколение (1945-1955)

30 слайд

Описание слайда:

Electronic Numerical Integrator And Computer Дж. Моучли и П. Эккерт Первый компьютер общего назначения на электронных лампах: длина 26 м, вес 35 тонн сложение – 1/5000 сек, деление – 1/300 сек десятичная система счисления 10-разрядные числа ЭНИАК (1946)

31 слайд

Описание слайда:

1951. МЭСМ – малая электронно-счетная машина 6 000 электронных ламп 3 000 операций в секунду двоичная система 1952. БЭСМ – большая электронно-счетная машина 5 000 электронных ламп 10 000 операций в секунду Компьютеры С.А. Лебедева

32 слайд

Описание слайда:

на полупроводниковых транзисторах (1948, Дж. Бардин, У. Брэттейн и У. Шокли) Транзи́стор (англ. transistor), полупроводниковый триод - радиоэлектронный компонент из полупроводникового материала, обычно с тремя выводами, позволяющий входным сигналам управлять током в электрической цепи. 10-200 тыс. операций в секунду первые операционные системы первые языки программирования: Фортран (1957), Алгол (1959) средства хранения информации: магнитные барабаны, магнитные диски II поколение (1955-1965)

33 слайд

Описание слайда:

1953-1955. IBM 604, IBM 608, IBM 702 1965-1966. БЭСМ-6 60 000 транзисторов 200 000 диодов 1 млн. операций в секунду память – магнитная лента, магнитный барабан работали до 90-х гг. II поколение (1955-1965)

34 слайд

Описание слайда:

на интегральных микросхемах (1958, Дж. Килби) быстродействие до 1 млн. операций в секунду оперативная памяти – сотни Кбайт операционные системы – управление памятью, устройствами, временем процессора языки программирования Бэйсик (1965), Паскаль (1970, Н. Вирт), Си (1972, Д. Ритчи) совместимость программ III поколение (1965-1980)

35 слайд

Описание слайда:

большие универсальные компьютеры 1964. IBM/360 фирмы IBM. кэш-память конвейерная обработка команд операционная система OS/360 1 байт = 8 бит (а не 4 или 6!) разделение времени 1970. IBM/370 1990. IBM/390 дисковод принтер Мэйнфреймы IBM

Слайд 1

И с т о р и я развития вычислительной техники

Слайд 2

ПРЕДМЕТЫ СЧЕТА ДРЕВНИХ ЛЮДЕЙ

До изобретения простых счет люди учились считать на пальцах рук

Использовали и посторонние предметы:узелки,камни, палочки, делали зарубки на дереве и костях

Слайд 3

С древних времен люди пытались создать средства для облегчения счета

ПРООБРАЗ НАШИХ СЕМИКОСТОЧКОВЫХ СЧЕТОВ

Слайд 4

НАШИ КОНТОРСКИЕ СЧЕТЫ – ЭТО РАЗНОВИДНОСТЬ ЗНАМЕНИТОГО АБАКА

конторские счеты абак

Слайд 5

Простейший абак - это доска с прорезанными в ней желобами. Как найти сумму двух чисел 134+223=357

1. Уложим в нижний желобок 4 камешка

2 В следующий 3 камешка

3. В третий желоб 1 камешек

4. Затем добавляем аналогично цифры второго слагаемого

5. Таким образом получился результат

Абак использовался в V -IV веке до нашей эры Их изготавливали из бронзы, камня слоновой кости, цветногостекла. Перевод с греческого слова абак означает ПЫЛЬ, т.к. изначально камешки раскладывали на ровную доску, покрытую пылью, чтобы камешки не скатывались Абаки использовались в Древней Греции и Риме, а чуть позже и в Западной Европе

Слайд 6

Счеты имели разные народы и поэтому имели свои особенности в расположении косточек. Так в Японии А так в Китае

суан-пань

Слайд 7

Дж.Непер изобрел логарифмы

Эдмунд Гунтер изобрел логарифмическую линейку с неподвижными шкалами

Логарифмическая линейка

Слайд 8

В 1623 г. В. Шикард изобрел машину, способную суммировать, вычитать, делить и перемножать числа. Это была первая механическая машина.

Первые механические приспособления для счета

Знаменитый физик, математик Блез Паскаль в 1642 году изобрел механическое устройство арифмометр

Слайд 9

В 1671 году Готфрид Вильгельм Лейбниц создал свою счетную машину, известную как “счетное колесо“ Лейбница. Он писал о машинах будущего, что они будут пригодны для работы с символами и формулами. Тогда эта идея казалась абсурдной.

Г. ЛЕЙБНИЦ

Слайд 10

В 1830 году был представлен проект аналитической машины Бэббиджа, которая явилась первым автоматическим программируемым вычислительным устройством.

ЧАРЛЬЗ БЕББИДЖ

Слайд 11

Ж. ЖАККАРД – ПЕРВЫЙ ИЗОБРЕТАТЕЛЬ ПЕРФОКАРТ

Станок для подготовки перфокарт

Общий вид перфокарт

Слайд 12

Графиня Ада Августа Лавлейс – была программистом первой аналитической машины.

ПЕРВАЯ ПРОГРАММИСТКА

Ее именем назван, разработанный в 1979 году, алгоритмический язык ADA

Слайд 13

В начале 19 века для расчетов применялись механические арифмометры

Слайд 14

1925 г. - на Сущевском им. Ф. Э. Дзержинского механическом заводе в Москве налажено производство арифмометров под маркой "Оригинал-Однер", в дальнейшем (с 1931 г.) они стали известны как арифмометры “Феликс”

Арифмометр имеет в верхней части (коробка) девять прорезов, в которых передвигаются рычажки. Сбоку прорезов нанесены цифры; передвигая вдоль каждого прореза рычажок, можно “поставить на рычагах” любое девятизначное число. Внизу под рычагами находятся два ряда окошечек (подвижная каретка): одни, более крупные, числом 13 справа. другие, меньшие, слева, числом 8. Ряд окошечек справа образует результирующий счетчик, а ряд слева - счетчик оборотов. Номер окошечка на счетчике указывает место единиц какого-либо разряда числа, стоящего на этом счетчике.Справа и слева каретки видны барашки (ласточки), служащие для сбрасывания цифр, появляющихся на этих счетчиках. Повертывая барашки до тех пор, пока они не щелкнут, мы убираем все цифры на счетчиках, оставляя нули.На коробке машины справа от прорезов имеются две стрелки, на концах которых стоят плюс (+) и минус (-). С правой стороны машины имеется ручка, которую можно повертывать в направлении плюс (по часовой стрелке) и в направлении минус (против часовой стрелки).Пусть на результирующем счетчике и на счетчике оборотов стоят нули. Поставим на рычагах какое-нибудь число, например 231 705 896, и повернем ручку в направлении плюс. После одного оборота на результирующем счетчике появится тоже число 231705 896 .Сложение и вычитание. Чтобы сложить несколько чисел, надо поставить эти числа одно за другим на рычагах и после каждой установки 1 раз повернуть ручку в направлении плюс. На результирующем счетчике появится сумма всех чисел.При вращении ручки в обратную сторону на результирующем счетчике появится разность между числом, стоявшим в нем до начала поворота, и числом, поставленным на рычагах. Умножение. Каретка арифмометра может передвигаться вдоль машины вправо и влево, и под прорезом для единиц можно поставить различные окошечки результирующего счетчика.

Слайд 15

В 1935 г. в СССР был выпущен клавишный полуавтоматический арифмометр КСМ-1 (клавишная счетная машина). Эта машина имела два привода: электрический (со скоростью 300 оборотов в минуту) и ручной (на случай отсутствия питания).

Клавиатура машины состоит из 8 вертикальных рядов по 10 клавишей в каждом, т. е. можно набрать 8-значные числа. Для удобства набора группы разрядов клавиатуры окрашены в разные цвета. Имеются клавиши гашения. Если цифра набрана ошибочно, то для ее замены достаточно нажать на нужную цифру в том же ряду и тогда неверно набранная цифра погасится автоматически. В подвижной каретке находится 16-разрядный счетчик результатов и 8-разрядный счетчик оборотов, имеющие устройства для передачи десятков из одного разряда в другой. Для гашения этих счетчиков служит ручка. Имеются подвижные запятые (для удобства считывания). Звонок сигнализирует о переполнении счетчика результатов. В послевоенные годы были выпущены полуавтоматы КСМ-2 (с незначительными отличиями по конструкции от КСМ-1, но с более удобным расположением рабочих деталей)

Слайд 16

В 40-ых г.г 19 столетия произошел коренной переворот в развитии вычислительной техники. С 1943 по1946 год в США была построена первая полностью электронная цифровая машина.

ПЕРЕВОРОТ

Слайд 17

Во времена Др. Рима был изобретен первый счетный инструмент - Абак В XVI в. в России были изобретены счеты. 1642г. – Блез Паскаль изобрел Колесо «Паскаля», механически выполняющее сложение и вычитание чисел. 1694г. – Готфрид Лейбниц сконструировал арифмометр, производящий четыре действия. 1888г. – Герман Холлерит сконструировал первую счетную машину.


Доэлектронная эпоха

Потребность счета предметов у человека возникла в доисторические времена. Потребности счета заставили людей использовать счетные эталоны. Первое вычислительное устройство - абак. По мере усложнения хозяйственной деятельности и социальных отношений и по прошествии веков стали использовать – счеты.


Блез Паскаль (1623 – 1662 гг.)

Французский религиозный философ, писатель, математик и физик Блез Паскаль в 1642 г. сконструировал первый механический вычислитель, позволяющий складывать и вычитать числа.


Г. Лейбниц

В 1673 г. немецкий ученый Г. Лейбниц разработал счетное устройство, в котором использовал механизм, известный под названием «колеса Лейбница». Его счетная машина выполняла не только сложение и вычитание, но и умножение и деление.


Карл Томас

В XIX веке Карл Томас изобрел первые счетные машины – арифмометры. Функции: сложение, вычисление, умножение, деление, запоминание промежуточные результатов, печать результатов и многое другое.


Аналитическая машина Бэббиджа (середина XIX в.)

Аналитическая машина состоит из 4000 стальных деталей и весит 3 тонны. Вычисления производились в соответствии с инструкциями (программами), которые разработала леди Ада Лавлейс (дочь английского поэта Байрона). Графиню Лавлейс считают первым программистом и в ее честь назван язык программирования АДА.



Первая ЭВМ в мире

В 1945 г. американские инженер-электронщик Дж. П. Эккерт и физик Дж.У. Моучли в Пенсильванском университете сконструировали, по заказу военного ведомства США, первую электронно-вычислительную машину - “ Эниак ” (Electronic Numerical Integrator and Computer)


Первые советские ЭВМ

Первая советская электронная вычислительная машина (получившая в дальнейшим название МЭСМ – малая электронная счетная машина) была создана в 1949 г. в Киеве, а через три года, в 1952 г., в Москве вошла в строй машина БЭСМ (быстродействующая электронная счетная машина). Обе машины были созданы под руководством выдающегося советского ученого Сергея Алексеевича Лебедева (1902-1974), основоположника советской электронной вычислительной техники.


МЭСМ выполняла арифметические действия над 5-6-значными числами со скоростью 50 операций в секунду, имела память на электронных лампах объемом в 100 ячеек, занимала 50 кв. м., потребляла 25 кВ/ч.


БЭСМ - выполняла программы со скоростью примерно 10 000 команд в секунду. Память БЭСМ состояла из 1024 ячеек (по 39 разрядов). Эта память была построена на магнитных сердечниках. Внешняя память ЭВМ была размещена на двух магнитных барабанах и одной магнитной ленте и вмещала 100 000 39-битных слов.


ЭВМ первого поколения (1945 – 1957 гг.)

Все ЭВМ I-го поколения были сделаны на основе электронных ламп, что делало их ненадежными - лампы приходилось часто менять. Эти компьютеры были огромными, неудобными и слишком дорогими машинами, которые могли приобрести только крупные корпорации и правительства. Лампы потребляли огромное количество электроэнергии и выделяли много тепла.


ЭВМ второго поколения (1958 – 1964 гг.)

В 60-е годы XX века были созданы ЭВМ второго поколения, в которых на смену электронным лампам пришли транзисторы. Такие ЭВМ производились малыми сериями и использовались в крупных научно-исследовательских центрах и ведущих высших учебных заведениях.


В СССР в 1967 году выпустилась наиболее мощная в Европе машина ЭВМ второго поколения

БЭСМ-6 (Быстродействующая Электронная Счетная Машина 6), которая могла выполнять 1 миллион операций в секунду.


ЭВМ третьего поколения

С 70-х годов прошлого века в качестве элементной базы ЭВМ третьего поколения стали использовать интегральные схемы . ЭВМ на базе интегральных схем стали более компактными, быстродействующими и дешевыми. Такие мини-ЭВМ производились большими сериями и стали доступны для большинства научных институтов и высших учебных заведений.


Персональные компьютеры

Развитие высоких технологий привело к созданию больших интегральных схем – БИС, включающих десятки тысяч транзисторов. Это позволило приступать к выпуску компактных персональных компьютеров, доступных для массового использования.


Первый персональный компьютер

В 1977 году был создан первый персональный компьютер Apple II , а в 1982 году фирма IBM приступила к изготовлению персональных компьютеров IBM PC.


Персональные компьютеры

За тридцать лет развития персональные компьютеры превратились в мощные высокопроизводительные устройства по обработке самых различных видов информации, которые качественно расширили сферу применения вычислительных машин. Персональные компьютеры выпускают в стационарном (настольном) и в портативном исполнении.

Ежегодно в мире производится почти 200 миллионов компьютеров, доступных по цене для массового потребителя.


Поколения ЭВМ

Характерис-тика

Годы использования

40 - 50-е гг. ХХ в.

Основной элемент

поколение

поколение

60-е гг. ХХ в.

Электронная лампа

Быстродейст-вие, операций в секунду

Десятки тысяч

Персональ-ные компьютеры

70-е гг. ХХ в.

Количество ЭВМ в мире, шт.

Транзистор

поколение

Сотни тысяч

Интегральная схема

80-е гг. ХХ в. – настоящее время

Большая интегральная схема

Миллионы

Миллиарды

Сотни тысяч



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!